Quasi-convex Optimization of Metrics in Biometric Score Fusion

Yanmin Gong, Jiansheng Chen, G. Su
{"title":"Quasi-convex Optimization of Metrics in Biometric Score Fusion","authors":"Yanmin Gong, Jiansheng Chen, G. Su","doi":"10.1109/ICIG.2011.50","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of score fusion in biometric authentication. Single valued metrics related to the receiver operating characteristics (ROC) curve, such as Equal Error Rate (EER) and False Rejection Rate (FRR) when False Acceptance Rate equals zero, are extensively used for evaluating biometric authentication performances. Various requirements and preferences, for example, lower EER, or smaller FRR, may be imposed on biometric authentication systems in different application scenarios. We propose a novel method of score fusion based on quasi-convex optimization to directly improve biometric authentication metrics. Experiments based on a face recognition system demonstrate the effectiveness of the proposed method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we address the problem of score fusion in biometric authentication. Single valued metrics related to the receiver operating characteristics (ROC) curve, such as Equal Error Rate (EER) and False Rejection Rate (FRR) when False Acceptance Rate equals zero, are extensively used for evaluating biometric authentication performances. Various requirements and preferences, for example, lower EER, or smaller FRR, may be imposed on biometric authentication systems in different application scenarios. We propose a novel method of score fusion based on quasi-convex optimization to directly improve biometric authentication metrics. Experiments based on a face recognition system demonstrate the effectiveness of the proposed method.
生物特征评分融合中指标的拟凸优化
本文研究了生物特征认证中的分数融合问题。与接收者工作特征(ROC)曲线相关的单值指标,如等错误率(EER)和错误接受率为零时的错误拒绝率(FRR),被广泛用于评估生物识别认证性能。在不同的应用场景中,生物识别认证系统可能会有不同的要求和偏好,例如更低的EER或更小的FRR。提出了一种基于拟凸优化的分数融合方法,直接改进了生物特征认证指标。基于人脸识别系统的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信