An Ant Colony Optimization Heuristic to solve the VRP with Time Window

Myung-Duk Hong, Young-Hoon Yu, Geun-Sik Jo
{"title":"An Ant Colony Optimization Heuristic to solve the VRP with Time Window","authors":"Myung-Duk Hong, Young-Hoon Yu, Geun-Sik Jo","doi":"10.3745/KIPSTB.2010.17B.5.389","DOIUrl":null,"url":null,"abstract":"The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.5.389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.
求解带时间窗VRP的蚁群算法
带时间窗的车辆路径与调度问题(VRSPTW)是建立一条成本最小的配送路线,满足多个客户的时间约束和容量需求。VRSPTW需要很长时间才能生成一个解决方案,因为这是一个NP-hard问题。为了在合理的时间内生成最优解,我们提出了一种基于多代价函数的蚁群优化算法。当每个蚂蚁评估移动到下一个客户节点的成本时,多成本函数通过对成本因素施加不同的权重值(如距离、需求、角度和时间窗口)来生成可行的初始路径。实验结果表明,基于机会时间的所罗门启发式算法和混合启发式算法能更有效地生成最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信