{"title":"An Ant Colony Optimization Heuristic to solve the VRP with Time Window","authors":"Myung-Duk Hong, Young-Hoon Yu, Geun-Sik Jo","doi":"10.3745/KIPSTB.2010.17B.5.389","DOIUrl":null,"url":null,"abstract":"The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.5.389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.