Huiying Cao, Jiangzhou Deng, Huifang Guo, Bo He, Yong Wang
{"title":"An improved recommendation algorithm based on Bhattacharyya Coefficient","authors":"Huiying Cao, Jiangzhou Deng, Huifang Guo, Bo He, Yong Wang","doi":"10.1109/ICKEA.2016.7803027","DOIUrl":null,"url":null,"abstract":"Collaborative Filtering (CF) has become one of the most successful approaches for providing personalized product recommendations to users. Neighborhood-based CF is one of the main forms among all CFs, which is widely used in commercial domain. However, neighborhood-based CF suffers from new user cold-start problem in sparse rating data. In this paper, we propose an improved neighborhood-based CF recommendation algorithm based on Bhattacharyya Coefficient to address the new user cold-start problem. The proposed algorithm combines the item neighborhood information with the user neighborhood information to improve the recommendation precision. Finally, the proposed algorithm is tested on a real dataset and the results show the proposed algorithm has the better recommendation performance.","PeriodicalId":241850,"journal":{"name":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKEA.2016.7803027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Collaborative Filtering (CF) has become one of the most successful approaches for providing personalized product recommendations to users. Neighborhood-based CF is one of the main forms among all CFs, which is widely used in commercial domain. However, neighborhood-based CF suffers from new user cold-start problem in sparse rating data. In this paper, we propose an improved neighborhood-based CF recommendation algorithm based on Bhattacharyya Coefficient to address the new user cold-start problem. The proposed algorithm combines the item neighborhood information with the user neighborhood information to improve the recommendation precision. Finally, the proposed algorithm is tested on a real dataset and the results show the proposed algorithm has the better recommendation performance.