Embedding of binomial trees in hypercubes with link faults

Jie Wu, E. Fernández, Ying-Chen Lo
{"title":"Embedding of binomial trees in hypercubes with link faults","authors":"Jie Wu, E. Fernández, Ying-Chen Lo","doi":"10.1109/ICPP.1997.622564","DOIUrl":null,"url":null,"abstract":"We study the embedding of binomial trees with variable roots in n-dimensional hypercubes (n-cubes) with faulty links. A simple embedding algorithm is first proposed that can embed an n-level binomial tree in an n-cube with up to n-1 faulty links in log(n-1) steps. We then extend the result to show that spanning binomial trees exist in a connected n-cube with up to [3(n-1)/2]-1 faulty links. Our results reveal the fault tolerance property of hypercubes and they can be used to predict the performance of broadcasting and reduction operations, where the binomial tree structure is commonly used.","PeriodicalId":221761,"journal":{"name":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1997.622564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We study the embedding of binomial trees with variable roots in n-dimensional hypercubes (n-cubes) with faulty links. A simple embedding algorithm is first proposed that can embed an n-level binomial tree in an n-cube with up to n-1 faulty links in log(n-1) steps. We then extend the result to show that spanning binomial trees exist in a connected n-cube with up to [3(n-1)/2]-1 faulty links. Our results reveal the fault tolerance property of hypercubes and they can be used to predict the performance of broadcasting and reduction operations, where the binomial tree structure is commonly used.
链路故障超立方体中二叉树的嵌入
研究了带有错误链接的n维超立方体中变根二叉树的嵌入问题。首先提出了一种简单的嵌入算法,该算法可以在log(n-1)步长的n-立方体中嵌入n层二叉树,最多有n-1个错误链接。然后我们扩展结果,证明生成二叉树在连通的n-立方体中存在多达[3(n-1)/2]-1个错误链路。我们的研究结果揭示了超立方体的容错特性,它们可以用来预测广播和约简操作的性能,其中二叉树结构是常用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信