Asymptotic analysis of heaps of pieces and application to timed Petri nets

S. Gaubert, J. Mairesse
{"title":"Asymptotic analysis of heaps of pieces and application to timed Petri nets","authors":"S. Gaubert, J. Mairesse","doi":"10.1109/PNPM.1999.796562","DOIUrl":null,"url":null,"abstract":"What is the density of an infinite heap of pieces, if we let pieces fall down randomly, or if we select pieces to maximize the density? How many transitions of a safe timed Petri net can we fire per time unit? We reduce these questions to the computation of the average and optimal case Lyapunov exponents of max-plus automata, and we present several techniques to compute these exponents. First, we introduce a completed \"non-linear automaton\", which essentially fills incrementally all the gaps that can be filled in a heap without changing its asymptotic height. Using this construction, when the pieces have integer valued shapes, and when any two pieces overlap, the Lyapunov exponents can be explicitly computed. We present two other constructions (partly based on Cartier-Foata normal forms of traces) which allow us to compute the optimal case Lyapunov exponent, assuming only that the pieces have integer valued shapes.","PeriodicalId":283809,"journal":{"name":"Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.1999.796562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

What is the density of an infinite heap of pieces, if we let pieces fall down randomly, or if we select pieces to maximize the density? How many transitions of a safe timed Petri net can we fire per time unit? We reduce these questions to the computation of the average and optimal case Lyapunov exponents of max-plus automata, and we present several techniques to compute these exponents. First, we introduce a completed "non-linear automaton", which essentially fills incrementally all the gaps that can be filled in a heap without changing its asymptotic height. Using this construction, when the pieces have integer valued shapes, and when any two pieces overlap, the Lyapunov exponents can be explicitly computed. We present two other constructions (partly based on Cartier-Foata normal forms of traces) which allow us to compute the optimal case Lyapunov exponent, assuming only that the pieces have integer valued shapes.
块堆的渐近分析及其在定时Petri网中的应用
一个无限的棋子堆的密度是多少,如果我们让棋子随机掉下来,或者如果我们选择让密度最大化的棋子?一个安全的定时Petri网在一个时间单位内可以进行多少次转换?我们将这些问题简化为计算最大加自动机的平均和最优情况Lyapunov指数,并给出了几种计算这些指数的技术。首先,我们引入一个完整的“非线性自动机”,它在不改变堆的渐近高度的情况下,增量地填充堆中所有可以填充的间隙。使用这种结构,当碎片具有整数值形状时,当任意两个碎片重叠时,Lyapunov指数可以显式计算。我们提出了另外两种结构(部分基于轨迹的Cartier-Foata范式),它们允许我们计算最优情况下的Lyapunov指数,仅假设碎片具有整数值形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信