Cycled merging registration of point clouds for 3D human body modeling

Yanjie Chen, Yuhong Li, F. Qi, Zhanyu Ma, Honggang Zhang
{"title":"Cycled merging registration of point clouds for 3D human body modeling","authors":"Yanjie Chen, Yuhong Li, F. Qi, Zhanyu Ma, Honggang Zhang","doi":"10.1109/SPLIM.2016.7528394","DOIUrl":null,"url":null,"abstract":"In this paper, we present a cycled merging registration method based on Iterative Closest Point (ICP). We capture the point clouds by a static Kinect with the object rotating on a turntable. Different views of scan are combined by ICP and then a globally consistent human model is obtained. Our method simplifies the process of successively registration, which is usually used to solve multi-views registration from a single cycle. The main contribution of this paper is to propose a pairwise-to-global registration method, which aligns several sub-integrate views in a merging order. Our method is consistent with some cycled registration constraints which are suitable for non-rigid registration. After all point clouds are merged, the surface of the model can be estimated by Moving Least Square (MLS). A model of a part of non-rigid human body is constructed in our experiments.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present a cycled merging registration method based on Iterative Closest Point (ICP). We capture the point clouds by a static Kinect with the object rotating on a turntable. Different views of scan are combined by ICP and then a globally consistent human model is obtained. Our method simplifies the process of successively registration, which is usually used to solve multi-views registration from a single cycle. The main contribution of this paper is to propose a pairwise-to-global registration method, which aligns several sub-integrate views in a merging order. Our method is consistent with some cycled registration constraints which are suitable for non-rigid registration. After all point clouds are merged, the surface of the model can be estimated by Moving Least Square (MLS). A model of a part of non-rigid human body is constructed in our experiments.
三维人体建模中点云的循环合并配准
提出了一种基于迭代最近点(ICP)的循环合并配准方法。我们通过静态Kinect捕捉点云,物体在转盘上旋转。通过ICP结合不同的扫描视图,得到一个全局一致的人体模型。该方法简化了通常用于解决单周期多视图配准的连续配准过程。本文的主要贡献是提出了一种成对到全局的配准方法,该方法将多个子集成视图按合并顺序对齐。该方法符合一些适合于非刚性配准的循环配准约束。将所有点云合并后,利用移动最小二乘法(MLS)估计模型表面。在实验中建立了一个非刚体人体的局部模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信