A formula for separating small roots of a polynomial

SIGSAM Bull. Pub Date : 2002-09-01 DOI:10.1145/603273.603277
Tateaki Sasaki, Akira Terui
{"title":"A formula for separating small roots of a polynomial","authors":"Tateaki Sasaki, Akira Terui","doi":"10.1145/603273.603277","DOIUrl":null,"url":null,"abstract":"Let <i>P(x)</i> be a univariate polynomial over C, such that <i>P(x) = c<inf>n</inf>x<sup>n</sup> + ... + c<inf>m+1</inf>x<sup>m+1</sup> + x<sup>m</sup> + e<inf>m-1</inf>x<sup>m-1</sup> + ... + e<inf>0</inf>,</i> where max{<i>|c<inf>n</inf>|, ..., |c<inf>m+1</inf>|</i>} = 1 and <i>e</i> = max{<i>|e<inf>m-1</inf>|, |e<inf>m-2</inf>|<sup>1/2</sup>, ..., |e<inf>0</inf>|<sup>1/m</sup></i>} << 1. <i>P(x)</i> has <i>m</i> small roots around the origin so long as <i>e</i> << 1. In 1999, we derived a formula that if <i>e</i> < 1/9 then <i>P(x)</i> has <i>m</i> roots inside a disc <i>D</i><inf>in</inf> of radius <i>R</i><inf>in</inf> and other <i>n - m</i> roots outside a disc <i>D</i><inf>out</inf> of radius <i>R</i><inf>out</inf>, located at the origin, where <i>R</i><inf>in(out)</inf> = [1 - (+) √1 - (16<i>e</i>)/(1 + 3<i>e</i>)<sup>2</sup>] × (1 + 3<i>e</i>)/4. Note that <i>R</i><inf>in</inf> = <i>R</i><inf>out</inf> if <i>e</i> = 1/9. Our formula is essentially the same as that derived independently by Yakoubsohn at almost the same time. In this short article, we introduce the formula and check its sharpness on many polynomials generated randomly.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/603273.603277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Let P(x) be a univariate polynomial over C, such that P(x) = cnxn + ... + cm+1xm+1 + xm + em-1xm-1 + ... + e0, where max{|cn|, ..., |cm+1|} = 1 and e = max{|em-1|, |em-2|1/2, ..., |e0|1/m} << 1. P(x) has m small roots around the origin so long as e << 1. In 1999, we derived a formula that if e < 1/9 then P(x) has m roots inside a disc Din of radius Rin and other n - m roots outside a disc Dout of radius Rout, located at the origin, where Rin(out) = [1 - (+) √1 - (16e)/(1 + 3e)2] × (1 + 3e)/4. Note that Rin = Rout if e = 1/9. Our formula is essentially the same as that derived independently by Yakoubsohn at almost the same time. In this short article, we introduce the formula and check its sharpness on many polynomials generated randomly.
分离多项式的小根的公式
设P(x)是C上的单变量多项式,使得P(x) = cnxn +…+ cm+1xm+1 + xm+ em-1xm-1 +…+ e0, where max{|cn|,…, |cm+1|} = 1 and e = max{|em-1|, |em-2|1/2,…, P(x)在原点周围有m个小根,只要e e < 1/9,那么P(x)在半径为Rin的圆盘Din内有m个根,在半径为Rout的圆盘Dout外有n - m个根,位于原点,其中Rin(out) =[1 -(+)√1 - (16e)/(1 + 3e)2] × (1 + 3e)/4。注意,如果e = 1/9,则Rin = route。我们的公式和yakubsohn在同一时间独立导出的公式本质上是一样的。在这篇短文中,我们介绍了这个公式,并在随机生成的许多多项式上检验了它的锐度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信