Run-DMC: Runtime dynamic heterogeneous multicore performance and power estimation for energy efficiency

T. Mück, S. Sarma, N. Dutt
{"title":"Run-DMC: Runtime dynamic heterogeneous multicore performance and power estimation for energy efficiency","authors":"T. Mück, S. Sarma, N. Dutt","doi":"10.1109/CODESISSS.2015.7331380","DOIUrl":null,"url":null,"abstract":"In this paper we propose Run-DMC, an accurate runtime performance and power estimation scheme for dynamic workloads executing on heterogeneous multicore systems. In contrast to previous works, Run-DMC uses fine grain per-thread metrics that model the Thread Load Contribution (TLC) induced by the native OS scheduling policy to accurately predict performance and power for any possible thread-to-core mapping. This allows the operating system to opportunistically exploit the heterogeneous multicore architecture by dynamically mapping workloads to the most appropriate core type. We have integrated our models into the Linux kernel running on top of a heterogeneous multicore system with 4 different core types. Our experimental results show that Run-DMC models yield up to 97% more energy efficient when compared to the vanilla Linux. When compared to the approach employed by state-of-the-art energy-aware schedulers, Run-DMC yields up-to 44% better energy efficiency.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODESISSS.2015.7331380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper we propose Run-DMC, an accurate runtime performance and power estimation scheme for dynamic workloads executing on heterogeneous multicore systems. In contrast to previous works, Run-DMC uses fine grain per-thread metrics that model the Thread Load Contribution (TLC) induced by the native OS scheduling policy to accurately predict performance and power for any possible thread-to-core mapping. This allows the operating system to opportunistically exploit the heterogeneous multicore architecture by dynamically mapping workloads to the most appropriate core type. We have integrated our models into the Linux kernel running on top of a heterogeneous multicore system with 4 different core types. Our experimental results show that Run-DMC models yield up to 97% more energy efficient when compared to the vanilla Linux. When compared to the approach employed by state-of-the-art energy-aware schedulers, Run-DMC yields up-to 44% better energy efficiency.
Run-DMC:运行时动态异构多核性能和能源效率的功率估计
在本文中,我们提出了Run-DMC,一个精确的运行时性能和功耗估计方案,用于在异构多核系统上执行的动态工作负载。与以前的工作相反,Run-DMC使用细粒度的每线程指标,这些指标对由本地操作系统调度策略引起的线程负载贡献(TLC)进行建模,以准确预测任何可能的线程到内核映射的性能和功耗。这允许操作系统通过动态地将工作负载映射到最合适的核心类型来利用异构多核架构。我们已经将我们的模型集成到运行在异构多核系统上的Linux内核中,该系统有4种不同的内核类型。我们的实验结果表明,与普通Linux相比,Run-DMC模型的能效提高了97%。与最先进的能源感知调度器所采用的方法相比,Run-DMC的能源效率提高了44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信