{"title":"Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation with Secret Key","authors":"Maungmaung Aprilpyone, H. Kiya","doi":"10.1145/3437880.3460398","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.