SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

Dominik Bauer, T. Patten, M. Vincze
{"title":"SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement","authors":"Dominik Bauer, T. Patten, M. Vincze","doi":"10.1109/WACV51458.2022.00027","DOIUrl":null,"url":null,"abstract":"Observational noise, inaccurate segmentation and ambiguity due to symmetry and occlusion lead to inaccurate object pose estimates. While depth- and RGB-based pose refinement approaches increase the accuracy of the resulting pose estimates, they are susceptible to ambiguity in the observation as they consider visual alignment. We propose to leverage the fact that we often observe static, rigid scenes. Thus, the objects therein need to be under physically plausible poses. We show that considering plausibility reduces ambiguity and, in consequence, allows poses to be more accurately predicted in cluttered environments. To this end, we extend a recent RL-based registration approach towards iterative refinement of object poses. Experiments on the LINEMOD and YCB-VIDEO datasets demonstrate the state-of-the-art performance of our depth-based refinement approach. Code is available at github.com/dornik/sporeagent.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Observational noise, inaccurate segmentation and ambiguity due to symmetry and occlusion lead to inaccurate object pose estimates. While depth- and RGB-based pose refinement approaches increase the accuracy of the resulting pose estimates, they are susceptible to ambiguity in the observation as they consider visual alignment. We propose to leverage the fact that we often observe static, rigid scenes. Thus, the objects therein need to be under physically plausible poses. We show that considering plausibility reduces ambiguity and, in consequence, allows poses to be more accurately predicted in cluttered environments. To this end, we extend a recent RL-based registration approach towards iterative refinement of object poses. Experiments on the LINEMOD and YCB-VIDEO datasets demonstrate the state-of-the-art performance of our depth-based refinement approach. Code is available at github.com/dornik/sporeagent.
SporeAgent:增强场景级别的物体姿态优化合理性
观测噪声、不准确的分割和由于对称和遮挡造成的模糊导致不准确的目标姿态估计。虽然基于深度和rgb的姿态改进方法提高了最终姿态估计的准确性,但由于它们考虑视觉对齐,因此在观察中容易产生歧义。我们建议利用我们经常观察静态、刚性场景的事实。因此,其中的物体需要在物理上合理的姿势下。我们表明,考虑合理性可以减少模糊性,因此,可以在混乱的环境中更准确地预测姿势。为此,我们扩展了最近基于rl的配准方法,用于对象姿态的迭代细化。在LINEMOD和YCB-VIDEO数据集上的实验证明了我们基于深度的改进方法的最先进性能。代码可从github.com/dornik/sporeagent获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信