The computational complexity of algebraic numbers

H. T. Kung
{"title":"The computational complexity of algebraic numbers","authors":"H. T. Kung","doi":"10.1145/800125.804046","DOIUrl":null,"url":null,"abstract":"Let {xi} be a sequence approximating an algebraic number α of degree r, and let [equation], for some rational function @@@@ with integral coefficients. Let M denote the number of multiplications or divisions needed to compute @@@@ and let M¯ denote the number of multiplications or divisions, except by constants, needed to compute @@@@. Define the multiplication efficiency measure of {xi} as [equation] or as [equation], where p is the order of convergence of {xi}. Kung [1] showed that Ē({xi}) ≤ 1 or equivalently, [equation]. In this paper we show that (i) [equation]; (ii) if E({xi}) = 1 then α is a rational number; (iii) if Ē({xi}) = 1 then α is a rational or quadratic irrational number. This settles the question of when the multiplication efficiency E({xi}) or Ē({xi}) achieves its optimal value of unity.","PeriodicalId":242946,"journal":{"name":"Proceedings of the fifth annual ACM symposium on Theory of computing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800125.804046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let {xi} be a sequence approximating an algebraic number α of degree r, and let [equation], for some rational function @@@@ with integral coefficients. Let M denote the number of multiplications or divisions needed to compute @@@@ and let M¯ denote the number of multiplications or divisions, except by constants, needed to compute @@@@. Define the multiplication efficiency measure of {xi} as [equation] or as [equation], where p is the order of convergence of {xi}. Kung [1] showed that Ē({xi}) ≤ 1 or equivalently, [equation]. In this paper we show that (i) [equation]; (ii) if E({xi}) = 1 then α is a rational number; (iii) if Ē({xi}) = 1 then α is a rational or quadratic irrational number. This settles the question of when the multiplication efficiency E({xi}) or Ē({xi}) achieves its optimal value of unity.
代数数的计算复杂性
设{xi}是一个近似于阶数为r的代数数α的数列,并设[方程],对于具有积分系数的有理函数@@@@。设M表示计算@@@@所需的乘法或除法次数,设M¯表示计算@@@@所需的除常数之外的乘法或除法次数。定义{xi}的乘法效率测度为[方程]或[方程],其中p为{xi}的收敛阶数。Kung[1]表明Ē({xi})≤1或等价于[式]。本文证明(i)[方程];(ii)如果E({xi}) = 1,则α是有理数;(iii)如果Ē({xi}) = 1,则α是有理数或二次无理数。这就解决了乘法效率E({xi})或Ē({xi})何时达到其最优统一值的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信