Cooperative UAV Jammer for Enhancing Physical Layer Security: Robust Design for Jamming Power and Trajectory

Yujung Roh, Seungjae Jung, Joonhyuk Kang
{"title":"Cooperative UAV Jammer for Enhancing Physical Layer Security: Robust Design for Jamming Power and Trajectory","authors":"Yujung Roh, Seungjae Jung, Joonhyuk Kang","doi":"10.1109/MILCOM47813.2019.9021084","DOIUrl":null,"url":null,"abstract":"An unmanned aerial vehicle (UAV)-aided network is becoming a promising application for the future wireless communication due to the flexible deployment and dominant line-of-sight channel. In this paper, we consider the UAV is operated as a cooperative jammer to enhance the physical layer security of the ground legitimated nodes in the presence of an eavesdropper (Eve). Furthermore, we assume that the UAV has imperfect information on the locations of the receiver and Eve due to GPS jamming and covert operation of Eve, respectively. With these uncertainties of the nodes' locations, we formulate a robust joint optimization problem of the UAV's jamming power and trajectory to maximize the average secrecy rate. To handle the non-convexity of the optimization problem, we propose an iterative suboptimal algorithm based on the block coordinate descent method. Simulation results present that the proposed algorithm has outstanding performance in terms of physical layer security compared to other benchmark methods.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9021084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

An unmanned aerial vehicle (UAV)-aided network is becoming a promising application for the future wireless communication due to the flexible deployment and dominant line-of-sight channel. In this paper, we consider the UAV is operated as a cooperative jammer to enhance the physical layer security of the ground legitimated nodes in the presence of an eavesdropper (Eve). Furthermore, we assume that the UAV has imperfect information on the locations of the receiver and Eve due to GPS jamming and covert operation of Eve, respectively. With these uncertainties of the nodes' locations, we formulate a robust joint optimization problem of the UAV's jamming power and trajectory to maximize the average secrecy rate. To handle the non-convexity of the optimization problem, we propose an iterative suboptimal algorithm based on the block coordinate descent method. Simulation results present that the proposed algorithm has outstanding performance in terms of physical layer security compared to other benchmark methods.
增强物理层安全性的协同型无人机干扰机:干扰功率和轨迹的鲁棒设计
无人机辅助网络由于其部署灵活、视距信道优势等优点,正成为未来无线通信的重要应用领域。在本文中,我们考虑将无人机作为一个协作干扰器来运行,以增强地面合法节点在窃听者(Eve)存在下的物理层安全性。进一步,我们假设由于GPS干扰和Eve的隐蔽行动,无人机对接收机和Eve的位置信息不完全。针对节点位置的不确定性,提出了以平均保密率最大化为目标的无人机干扰功率和轨迹鲁棒联合优化问题。针对优化问题的非凸性,提出了一种基于块坐标下降法的迭代次优算法。仿真结果表明,与其他基准方法相比,该算法在物理层安全性方面具有突出的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信