Gradient-based adaptive filters for non-Gaussian noise environments

G. Williamson, P. Clarkson
{"title":"Gradient-based adaptive filters for non-Gaussian noise environments","authors":"G. Williamson, P. Clarkson","doi":"10.1109/ICASSP.1992.226392","DOIUrl":null,"url":null,"abstract":"Convergence properties are studied for a class of gradient-based adaptive algorithms known as order statistic least mean square (OSLMS) algorithms. These algorithms apply an order statistic filtering operation to the gradient estimate of the standard least mean square (LMS) algorithm. The order statistic operation in OSLMS can reduce the variance of the gradient estimate (relative to LMS) when operating in non-Gaussian noise environments. A consequence is that in steady state the excess mean square error can be reduced. It is shown that the coefficient estimates for a class of OSLMS algorithms converge when the input signals are i.i.d. and symmetrically distributed.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Convergence properties are studied for a class of gradient-based adaptive algorithms known as order statistic least mean square (OSLMS) algorithms. These algorithms apply an order statistic filtering operation to the gradient estimate of the standard least mean square (LMS) algorithm. The order statistic operation in OSLMS can reduce the variance of the gradient estimate (relative to LMS) when operating in non-Gaussian noise environments. A consequence is that in steady state the excess mean square error can be reduced. It is shown that the coefficient estimates for a class of OSLMS algorithms converge when the input signals are i.i.d. and symmetrically distributed.<>
非高斯噪声环境下基于梯度的自适应滤波器
研究了一类基于梯度的自适应算法——阶统计最小均方算法的收敛性。这些算法对标准最小均方(LMS)算法的梯度估计应用序统计滤波操作。在非高斯噪声环境下,通过阶统计量运算可以减小梯度估计的方差(相对于LMS)。结果是,在稳定状态下,超额均方误差可以减小。结果表明,当输入信号为非均匀且对称分布时,一类OSLMS算法的系数估计收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信