Compressing DNN Parameters for Model Loading Time Reduction

Yang-Ming Yeh, Jennifer Shueh-Inn Hu, Yen-Yu Lin, Yi-Chang Lu
{"title":"Compressing DNN Parameters for Model Loading Time Reduction","authors":"Yang-Ming Yeh, Jennifer Shueh-Inn Hu, Yen-Yu Lin, Yi-Chang Lu","doi":"10.1109/icce-asia46551.2019.8942192","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) has been applied to a variety of computer vision tasks these days. However, DNN often suffers from its enormous execution time even with the aid of GPU. In this paper, we argue that the bandwidth bottleneck between GPU and GDRAM has to be addressed. To reduce loading time, we propose a DNN acceleration approach which compresses DNN parameters before loading model information to GPU and performs decompressing on GPU. Using JPEG compression as an example, the loss of the test accuracy can be kept within 4%, while an 8 × parameter-size reduction is achieved for VGG16.","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8942192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural network (DNN) has been applied to a variety of computer vision tasks these days. However, DNN often suffers from its enormous execution time even with the aid of GPU. In this paper, we argue that the bandwidth bottleneck between GPU and GDRAM has to be addressed. To reduce loading time, we propose a DNN acceleration approach which compresses DNN parameters before loading model information to GPU and performs decompressing on GPU. Using JPEG compression as an example, the loss of the test accuracy can be kept within 4%, while an 8 × parameter-size reduction is achieved for VGG16.
压缩DNN参数以减少模型加载时间
目前,深度神经网络(DNN)已被应用于各种计算机视觉任务中。然而,即使在GPU的帮助下,深度神经网络的执行时间也很长。在本文中,我们认为GPU和GDRAM之间的带宽瓶颈必须得到解决。为了减少加载时间,我们提出了一种DNN加速方法,该方法在将模型信息加载到GPU之前压缩DNN参数,并在GPU上进行解压缩。以JPEG压缩为例,测试精度的损失可以保持在4%以内,而VGG16的参数大小减少了8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信