Radical Sylvester-Gallai Theorem for Cubics

Rafael Oliveira, A. Sengupta
{"title":"Radical Sylvester-Gallai Theorem for Cubics","authors":"Rafael Oliveira, A. Sengupta","doi":"10.1109/FOCS54457.2022.00027","DOIUrl":null,"url":null,"abstract":"We prove that any cubic radical Sylvester-Gallai configuration is constant dimensional. This solves a conjecture of Gupta in degree 3 and generalizes the result from Shpilka, who proved that quadratic radical Sylvester-Gallai configurations are constant dimensional. To prove our Sylvester-Gallai theorem, we develop several new tools combining techniques from algebraic geometry and elimination theory. Among our technical contributions, we prove a structure theorem characterizing non-radical ideals generated by two cubic forms, generalizing previous structure theorems for intersections of two quadrics. Moreover, building upon the groundbreaking work Ananyan and Hochster, we introduce the notion of wide Ananyan-Hochster algebras and show that these algebras allow us to transfer the local conditions of Sylvester-Gallai configurations into global conditions.","PeriodicalId":390222,"journal":{"name":"2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS54457.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that any cubic radical Sylvester-Gallai configuration is constant dimensional. This solves a conjecture of Gupta in degree 3 and generalizes the result from Shpilka, who proved that quadratic radical Sylvester-Gallai configurations are constant dimensional. To prove our Sylvester-Gallai theorem, we develop several new tools combining techniques from algebraic geometry and elimination theory. Among our technical contributions, we prove a structure theorem characterizing non-radical ideals generated by two cubic forms, generalizing previous structure theorems for intersections of two quadrics. Moreover, building upon the groundbreaking work Ananyan and Hochster, we introduce the notion of wide Ananyan-Hochster algebras and show that these algebras allow us to transfer the local conditions of Sylvester-Gallai configurations into global conditions.
立方的根式Sylvester-Gallai定理
证明了任何三次自由基Sylvester-Gallai构形都是常维的。这解决了Gupta在3阶上的一个猜想,推广了Shpilka证明二次根Sylvester-Gallai构形是常维的结果。为了证明我们的Sylvester-Gallai定理,我们结合了代数几何和消元理论的技术,开发了一些新的工具。在我们的技术贡献中,我们证明了一个由两个三次形式产生的非激进理想的结构定理,推广了两个二次曲面相交的先前结构定理。此外,在Ananyan和Hochster开创性工作的基础上,我们引入了宽Ananyan-Hochster代数的概念,并表明这些代数允许我们将Sylvester-Gallai构型的局部条件转化为全局条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信