Modeling of microwave filters using gradient Particle Swarm Optimization neural networks

Chahrazad Erredir, M. L. Riabi, H. Ammari, E. Bouarroudj
{"title":"Modeling of microwave filters using gradient Particle Swarm Optimization neural networks","authors":"Chahrazad Erredir, M. L. Riabi, H. Ammari, E. Bouarroudj","doi":"10.1109/DAT.2017.7889160","DOIUrl":null,"url":null,"abstract":"In this paper, hybrid algorithm called gradient particle swarm optimization (GPSO) is proposed for training artificial neural networks (ANN). Then, the trained networks are applied to modeling waveguide filters (broad-band e-plane filters with improved stop-band and rectangular waveguide h-plane three-cavity filter). For validate effectiveness of this algorithm, we compared the results of convergence and modeling obtained with those obtained by back- propagation neural networks (BP-NN) and particle swarm optimization neural networks (PSO-NN).","PeriodicalId":371206,"journal":{"name":"2017 Seminar on Detection Systems Architectures and Technologies (DAT)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seminar on Detection Systems Architectures and Technologies (DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAT.2017.7889160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, hybrid algorithm called gradient particle swarm optimization (GPSO) is proposed for training artificial neural networks (ANN). Then, the trained networks are applied to modeling waveguide filters (broad-band e-plane filters with improved stop-band and rectangular waveguide h-plane three-cavity filter). For validate effectiveness of this algorithm, we compared the results of convergence and modeling obtained with those obtained by back- propagation neural networks (BP-NN) and particle swarm optimization neural networks (PSO-NN).
基于梯度粒子群优化神经网络的微波滤波器建模
本文提出了一种用于训练人工神经网络的混合算法——梯度粒子群优化算法(GPSO)。然后,将训练好的网络应用于波导滤波器的建模(改进阻带的宽带e面滤波器和矩形波导h面三腔滤波器)。为了验证该算法的有效性,我们将该算法的收敛和建模结果与BP-NN和粒子群优化神经网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信