An optimal line search algorithm for the conjugate gradient method

Toru Yamazato
{"title":"An optimal line search algorithm for the conjugate gradient method","authors":"Toru Yamazato","doi":"10.1109/ISDA.2014.7066265","DOIUrl":null,"url":null,"abstract":"A new line search technique for the conjugate gradient (CG) method, critical point approximation (CPA), is introduced. The CPA is an elaborately revised version of the parabolic interpolation (PI). The new algorithm evaluates the function and gradient at just one point for each line search, while the conventional PI requires two points. Although the CG usually evaluates the gradient at each critical point found in the iteration, the CG with CPA approximates the gradient, using information obtained for the line search. The new algorithm is implemented in an artificial neural network program for experiment and comparison. The results show that the CG method with the new algorithm converges significantly faster than that with the conventional PI. Under an optimistic assumption, the author explains that the CPA is an optimal line search algorithm for the CG method. Issues regarding the precision and computation time of the line search are discussed.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new line search technique for the conjugate gradient (CG) method, critical point approximation (CPA), is introduced. The CPA is an elaborately revised version of the parabolic interpolation (PI). The new algorithm evaluates the function and gradient at just one point for each line search, while the conventional PI requires two points. Although the CG usually evaluates the gradient at each critical point found in the iteration, the CG with CPA approximates the gradient, using information obtained for the line search. The new algorithm is implemented in an artificial neural network program for experiment and comparison. The results show that the CG method with the new algorithm converges significantly faster than that with the conventional PI. Under an optimistic assumption, the author explains that the CPA is an optimal line search algorithm for the CG method. Issues regarding the precision and computation time of the line search are discussed.
共轭梯度法的最优直线搜索算法
介绍了共轭梯度法的一种新的线搜索技术——临界点逼近法。CPA是抛物线插值(PI)的一个精心修订的版本。新算法在每条线搜索的一个点上计算函数和梯度,而传统的PI需要两个点。虽然CG通常在迭代中找到的每个临界点处评估梯度,但使用CPA的CG利用获得的信息进行直线搜索,近似于梯度。在人工神经网络程序中实现了新算法,并进行了实验和比较。结果表明,采用新算法的CG方法的收敛速度明显快于常规PI方法。在乐观的假设下,作者解释了CPA是CG方法的最优线搜索算法。讨论了直线搜索的精度和计算时间等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信