Where To Start? Transferring Simple Skills to Complex Environments

Vitalis Vosylius, Edward Johns
{"title":"Where To Start? Transferring Simple Skills to Complex Environments","authors":"Vitalis Vosylius, Edward Johns","doi":"10.48550/arXiv.2212.06111","DOIUrl":null,"url":null,"abstract":"Robot learning provides a number of ways to teach robots simple skills, such as grasping. However, these skills are usually trained in open, clutter-free environments, and therefore would likely cause undesirable collisions in more complex, cluttered environments. In this work, we introduce an affordance model based on a graph representation of an environment, which is optimised during deployment to find suitable robot configurations to start a skill from, such that the skill can be executed without any collisions. We demonstrate that our method can generalise a priori acquired skills to previously unseen cluttered and constrained environments, in simulation and in the real world, for both a grasping and a placing task.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Robot learning provides a number of ways to teach robots simple skills, such as grasping. However, these skills are usually trained in open, clutter-free environments, and therefore would likely cause undesirable collisions in more complex, cluttered environments. In this work, we introduce an affordance model based on a graph representation of an environment, which is optimised during deployment to find suitable robot configurations to start a skill from, such that the skill can be executed without any collisions. We demonstrate that our method can generalise a priori acquired skills to previously unseen cluttered and constrained environments, in simulation and in the real world, for both a grasping and a placing task.
从哪里开始?将简单技能转移到复杂环境中
机器人学习提供了许多方法来教授机器人简单的技能,比如抓取。然而,这些技能通常是在开放的、没有杂乱的环境中训练的,因此在更复杂、杂乱的环境中可能会造成不希望的碰撞。在这项工作中,我们引入了一个基于环境图表示的功能模型,该模型在部署过程中进行优化,以找到合适的机器人配置来启动技能,从而使技能可以在没有任何碰撞的情况下执行。我们证明,我们的方法可以将先验获得的技能推广到以前未见过的混乱和受限的环境中,无论是在模拟还是在现实世界中,都适用于抓取和放置任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信