Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks

Badre Bousalem, Vinicius F. Silva, R. Langar, Sylvain Cherrier
{"title":"Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in 5G and Beyond Mobile Networks","authors":"Badre Bousalem, Vinicius F. Silva, R. Langar, Sylvain Cherrier","doi":"10.1109/NetSoft54395.2022.9844053","DOIUrl":null,"url":null,"abstract":"In this demo, we present a 5G prototype for attacks detection and mitigation in sliced networks leveraging Machine Learning (ML). Our prototype, based on OpenAirInterface, allows creating network slices on demand and managing physical resources dynamically according to the users’ behavior, while considering the inputs from a northbound Software Defined Network (SDN) application. We focus here on Distributed Denial of Service (DDoS) attacks, where one or multiple malicious users generate attacks on the 5G Core Network. Based on our developed ML module, we show that our prototype is able to detect such attacks, then automatically creates a sinkhole-type slice with a small portion of physical resources, and isolates the malicious users within this slice to mitigate the attackers’ action. We demonstrate the effectiveness of our approach by showing the decrease in the network throughput for the malicious users by a factor of 15, while maintaining a high network throughput for benign users.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"55 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this demo, we present a 5G prototype for attacks detection and mitigation in sliced networks leveraging Machine Learning (ML). Our prototype, based on OpenAirInterface, allows creating network slices on demand and managing physical resources dynamically according to the users’ behavior, while considering the inputs from a northbound Software Defined Network (SDN) application. We focus here on Distributed Denial of Service (DDoS) attacks, where one or multiple malicious users generate attacks on the 5G Core Network. Based on our developed ML module, we show that our prototype is able to detect such attacks, then automatically creates a sinkhole-type slice with a small portion of physical resources, and isolates the malicious users within this slice to mitigate the attackers’ action. We demonstrate the effectiveness of our approach by showing the decrease in the network throughput for the malicious users by a factor of 15, while maintaining a high network throughput for benign users.
5G及以后移动网络中基于深度学习的DDoS攻击检测和缓解方法
在这个演示中,我们展示了一个利用机器学习(ML)在切片网络中检测和缓解攻击的5G原型。我们的原型,基于OpenAirInterface,允许按需创建网络切片,并根据用户的行为动态管理物理资源,同时考虑来自北向软件定义网络(SDN)应用程序的输入。我们在这里重点关注分布式拒绝服务(DDoS)攻击,其中一个或多个恶意用户对5G核心网产生攻击。基于我们开发的ML模块,我们展示了我们的原型能够检测到此类攻击,然后自动创建具有一小部分物理资源的天坑类型切片,并隔离该切片内的恶意用户以减轻攻击者的行动。我们通过显示恶意用户的网络吞吐量减少了15倍,同时保持良性用户的高网络吞吐量来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信