Adaptive Robust MPC: Combining Robustness with Online Performance Enhancement

Xiaonan Lu, M. Cannon
{"title":"Adaptive Robust MPC: Combining Robustness with Online Performance Enhancement","authors":"Xiaonan Lu, M. Cannon","doi":"10.1109/CONTROL.2018.8516719","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is a well-known control technique, which uses a system model to perform an explicit numerical optimization of future performance subject to constraints on system states and control inputs. In this context an inaccurate model can result in unreliable predictions and controller performance that is far from optimal, and consequently up to 80% of the overall effort of implementing MPC is spent on obtaining an adequate model [8]. Moreover, although model uncertainty can be accounted for using robust MPC techniques, the degree of uncertainty in the system model and unknown disturbances crucially affect the bounds on the achievable performance of a MPC strategy [3].","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model Predictive Control (MPC) is a well-known control technique, which uses a system model to perform an explicit numerical optimization of future performance subject to constraints on system states and control inputs. In this context an inaccurate model can result in unreliable predictions and controller performance that is far from optimal, and consequently up to 80% of the overall effort of implementing MPC is spent on obtaining an adequate model [8]. Moreover, although model uncertainty can be accounted for using robust MPC techniques, the degree of uncertainty in the system model and unknown disturbances crucially affect the bounds on the achievable performance of a MPC strategy [3].
自适应鲁棒MPC:鲁棒性与在线性能增强相结合
模型预测控制(MPC)是一种众所周知的控制技术,它使用系统模型在系统状态和控制输入的约束下对未来性能进行显式的数值优化。在这种情况下,不准确的模型可能导致不可靠的预测和控制器性能远远不是最优的,因此,实现MPC的80%的总体努力都花在了获得一个适当的模型上[8]。此外,尽管可以使用鲁棒MPC技术来解释模型的不确定性,但系统模型中的不确定性程度和未知干扰对MPC策略可实现性能的界限有着至关重要的影响[3]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信