ADMISSIBILITY OF RULES OF INFERENCE, AND LOGICAL EQUATIONS, IN MODAL LOGICS AXIOMATIZING PROVABILITY

V. Rybakov
{"title":"ADMISSIBILITY OF RULES OF INFERENCE, AND LOGICAL EQUATIONS, IN MODAL LOGICS AXIOMATIZING PROVABILITY","authors":"V. Rybakov","doi":"10.1070/IM1991V036N02ABEH002026","DOIUrl":null,"url":null,"abstract":"This paper examines the modal logics of Godel-Lob (GL) and Solovay (S) - the smallest and the largest modal representations of arithmetic theories. The problem of recognizing the admissibility of inference rules with parameters (and, in particular, without parameters) in GL and S is shown to be decidable; that is, a positive solution is obtained to analogues of a problem of Friedman. The analogue of a problem of Kuznetsov on finite bases of admissible rules for S and GL is solved in the negative sense. Algorithms are found for recognizing the solvability in GL and S of logical equations and for constructing solutions for them.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V036N02ABEH002026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper examines the modal logics of Godel-Lob (GL) and Solovay (S) - the smallest and the largest modal representations of arithmetic theories. The problem of recognizing the admissibility of inference rules with parameters (and, in particular, without parameters) in GL and S is shown to be decidable; that is, a positive solution is obtained to analogues of a problem of Friedman. The analogue of a problem of Kuznetsov on finite bases of admissible rules for S and GL is solved in the negative sense. Algorithms are found for recognizing the solvability in GL and S of logical equations and for constructing solutions for them.
模态逻辑公理化可证明性中推理规则和逻辑方程的容许性
本文研究了算术理论的最小和最大模态表示哥德尔-洛布(GL)和索洛维(S)的模态逻辑。证明了GL和S中带参数(特别是无参数)推理规则的可容许性识别问题是可判定的;也就是说,对弗里德曼问题的类似得到了一个正解。在S和GL的可容许规则有限基上的库兹涅佐夫问题在否定意义上得到了类似解。找到了识别逻辑方程在GL和S中的可解性和构造解的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信