Architecture and Algorithms for Syntetizable Neural Networks with On-Chip Learning

A. Tisan, S. Oniga, B. Attila, G. Ciprian
{"title":"Architecture and Algorithms for Syntetizable Neural Networks with On-Chip Learning","authors":"A. Tisan, S. Oniga, B. Attila, G. Ciprian","doi":"10.1109/ISSCS.2007.4292702","DOIUrl":null,"url":null,"abstract":"This paper presents a synthesizable programmable logic blocks architectures, describes the associated formula that makes the blocks to be generic for a backpropagation neural network (NN) with on-chip delta rule learning. The architecture proposed herein takes advantage of distinct datapaths for the forward and backward propagation stages to significantly improve the performance of the learning phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the same hardware.","PeriodicalId":225101,"journal":{"name":"2007 International Symposium on Signals, Circuits and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Signals, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2007.4292702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a synthesizable programmable logic blocks architectures, describes the associated formula that makes the blocks to be generic for a backpropagation neural network (NN) with on-chip delta rule learning. The architecture proposed herein takes advantage of distinct datapaths for the forward and backward propagation stages to significantly improve the performance of the learning phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the same hardware.
基于片上学习的可合成神经网络的体系结构和算法
本文提出了一种可合成的可编程逻辑块体系结构,描述了使具有片上增量规则学习的反向传播神经网络(NN)具有通用性的相关公式。本文提出的体系结构利用了前向和后向传播阶段不同的数据路径,显著提高了学习阶段的性能。该体系结构易于扩展,并且能够使用相同的硬件处理任意大小的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信