Outlier detection in graph streams

C. Aggarwal, Yuchen Zhao, Philip S. Yu
{"title":"Outlier detection in graph streams","authors":"C. Aggarwal, Yuchen Zhao, Philip S. Yu","doi":"10.1109/ICDE.2011.5767885","DOIUrl":null,"url":null,"abstract":"A number of applications in social networks, telecommunications, and mobile computing create massive streams of graphs. In many such applications, it is useful to detect structural abnormalities which are different from the “typical” behavior of the underlying network. In this paper, we will provide first results on the problem of structural outlier detection in massive network streams. Such problems are inherently challenging, because the problem of outlier detection is specially challenging because of the high volume of the underlying network stream. The stream scenario also increases the computational challenges for the approach. We use a structural connectivity model in order to define outliers in graph streams. In order to handle the sparsity problem of massive networks, we dynamically partition the network in order to construct statistically robust models of the connectivity behavior. We design a reservoir sampling method in order to maintain structural summaries of the underlying network. These structural summaries are designed in order to create robust, dynamic and efficient models for outlier detection in graph streams. We present experimental results illustrating the effectiveness and efficiency of our approach.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"202","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 202

Abstract

A number of applications in social networks, telecommunications, and mobile computing create massive streams of graphs. In many such applications, it is useful to detect structural abnormalities which are different from the “typical” behavior of the underlying network. In this paper, we will provide first results on the problem of structural outlier detection in massive network streams. Such problems are inherently challenging, because the problem of outlier detection is specially challenging because of the high volume of the underlying network stream. The stream scenario also increases the computational challenges for the approach. We use a structural connectivity model in order to define outliers in graph streams. In order to handle the sparsity problem of massive networks, we dynamically partition the network in order to construct statistically robust models of the connectivity behavior. We design a reservoir sampling method in order to maintain structural summaries of the underlying network. These structural summaries are designed in order to create robust, dynamic and efficient models for outlier detection in graph streams. We present experimental results illustrating the effectiveness and efficiency of our approach.
图流中的异常值检测
社交网络、电信和移动计算中的许多应用程序都创建了大量的图形流。在许多这样的应用中,检测与底层网络的“典型”行为不同的结构异常是有用的。在本文中,我们将提供关于大规模网络流中结构离群点检测问题的第一个结果。这些问题本质上是具有挑战性的,因为底层网络流的高容量使得异常值检测问题特别具有挑战性。流场景也增加了该方法的计算挑战。我们使用结构连接模型来定义图流中的异常值。为了处理大规模网络的稀疏性问题,我们对网络进行动态划分,以构建统计鲁棒性的连接行为模型。我们设计了一种储层采样方法,以保持底层网络的结构摘要。这些结构摘要的设计是为了创建鲁棒、动态和高效的模型,用于图流中的异常值检测。实验结果表明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信