Improving prediction in evolutionary algorithms for dynamic environments

A. Simoes, E. Costa
{"title":"Improving prediction in evolutionary algorithms for dynamic environments","authors":"A. Simoes, E. Costa","doi":"10.1145/1569901.1570021","DOIUrl":null,"url":null,"abstract":"The addition of prediction mechanisms in Evolutionary Algorithms (EAs) applied to dynamic environments is essential in order to anticipate the changes in the landscape and maximize its adaptability. In previous work, a combination of a linear regression predictor and a Markov chain model was used to enable the EA to estimate when next change will occur and to predict the direction of the change. Knowing when and how the change will occur, the anticipation of the change was made introducing useful information before it happens. In this paper we introduce mechanisms to dynamically adjust the linear predictor in order to achieve higher adaptability and robustness. We also extend previous studies introducing nonlinear change periods in order to evaluate the predictor's accuracy.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

The addition of prediction mechanisms in Evolutionary Algorithms (EAs) applied to dynamic environments is essential in order to anticipate the changes in the landscape and maximize its adaptability. In previous work, a combination of a linear regression predictor and a Markov chain model was used to enable the EA to estimate when next change will occur and to predict the direction of the change. Knowing when and how the change will occur, the anticipation of the change was made introducing useful information before it happens. In this paper we introduce mechanisms to dynamically adjust the linear predictor in order to achieve higher adaptability and robustness. We also extend previous studies introducing nonlinear change periods in order to evaluate the predictor's accuracy.
改进动态环境下进化算法的预测
在应用于动态环境的进化算法中增加预测机制是预测景观变化和最大化其适应性的必要条件。在以前的工作中,线性回归预测器和马尔可夫链模型的组合被用来使EA能够估计下一次变化发生的时间并预测变化的方向。知道变更何时以及如何发生,对变更的预测在变更发生之前引入了有用的信息。本文引入了动态调整线性预测器的机制,以达到更高的自适应性和鲁棒性。我们还扩展了以前的研究,引入非线性变化周期,以评估预测器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信