Privacy-Preserving Aggregation of Smart Metering via Transformation and Encryption

Lingjuan Lyu, Yee Wei Law, Jiong Jin, M. Palaniswami
{"title":"Privacy-Preserving Aggregation of Smart Metering via Transformation and Encryption","authors":"Lingjuan Lyu, Yee Wei Law, Jiong Jin, M. Palaniswami","doi":"10.1109/Trustcom/BigDataSE/ICESS.2017.273","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel privacy-preserving smart metering system for aggregating distributed smart meter data. It addresses two important challenges: (i) individual users wish to publish sensitive smart metering data for specific purposes, and (ii) an untrusted aggregator aims to make queries on the aggregate data. We handle these challenges using two main techniques. First, we propose Fourier Perturbation Algorithm (FPA) and Wavelet Perturbation Algorithm (WPA) which utilize Fourier/Wavelet transformation and distributed differential privacy (DDP) to provide privacy for the released statistic with provable sensitivity and error bounds. Second, we leverage an exponential ElGamal encryption mechanism to enable secure communications between the users and the untrusted aggregator. Standard differential privacy techniques perform poorly for time-series data as it results in a Θ(n) noise to answer n queries, rendering the answers practically useless if n is large. Our proposed distributed differential privacy mechanism relies on Gaussian principles to generate distributed noise, which guarantees differential privacy for each user with O(1) error, and provides computational simplicity and scalability. Compared with Gaussian Perturbation Algorithm (GPA) which adds distributed Gaussian noise to the original data, the experimental results demonstrate the superiority of the proposed FPA and WPA by adding noise to the transformed coefficients.","PeriodicalId":170253,"journal":{"name":"2017 IEEE Trustcom/BigDataSE/ICESS","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Trustcom/BigDataSE/ICESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a novel privacy-preserving smart metering system for aggregating distributed smart meter data. It addresses two important challenges: (i) individual users wish to publish sensitive smart metering data for specific purposes, and (ii) an untrusted aggregator aims to make queries on the aggregate data. We handle these challenges using two main techniques. First, we propose Fourier Perturbation Algorithm (FPA) and Wavelet Perturbation Algorithm (WPA) which utilize Fourier/Wavelet transformation and distributed differential privacy (DDP) to provide privacy for the released statistic with provable sensitivity and error bounds. Second, we leverage an exponential ElGamal encryption mechanism to enable secure communications between the users and the untrusted aggregator. Standard differential privacy techniques perform poorly for time-series data as it results in a Θ(n) noise to answer n queries, rendering the answers practically useless if n is large. Our proposed distributed differential privacy mechanism relies on Gaussian principles to generate distributed noise, which guarantees differential privacy for each user with O(1) error, and provides computational simplicity and scalability. Compared with Gaussian Perturbation Algorithm (GPA) which adds distributed Gaussian noise to the original data, the experimental results demonstrate the superiority of the proposed FPA and WPA by adding noise to the transformed coefficients.
基于转换和加密的智能计量隐私保护聚合
针对分布式智能电表数据的聚合,提出了一种新型的保密性智能电表系统。它解决了两个重要的挑战:(i)个人用户希望为特定目的发布敏感的智能计量数据,以及(ii)不受信任的聚合器旨在对聚合数据进行查询。我们使用两种主要技术来处理这些挑战。首先,我们提出傅里叶摄动算法(FPA)和小波摄动算法(WPA),利用傅里叶/小波变换和分布式差分隐私(DDP)为发布的统计量提供可证明的灵敏度和误差范围的隐私。其次,我们利用指数ElGamal加密机制来实现用户和不受信任的聚合器之间的安全通信。标准差分隐私技术对于时间序列数据的性能很差,因为它会导致回答n个查询时产生Θ(n)噪声,如果n很大,则导致答案实际上毫无用处。我们提出的分布式差分隐私机制依靠高斯原理产生分布式噪声,以0(1)误差保证每个用户的差分隐私,并且具有计算简单性和可扩展性。与在原始数据中加入分布高斯噪声的高斯摄动算法(GPA)相比,实验结果证明了在变换系数中加入噪声的FPA算法和WPA算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信