{"title":"Memristor-based Reconfigurable Circuits: Challenges in Implementation","authors":"N. Dao, Dirk Koch","doi":"10.1109/ICEIC49074.2020.9051174","DOIUrl":null,"url":null,"abstract":"The emergence of memristor technologies has recently received much attention due to their promising features, expecting to be a key driver in the post-CMOS era. With its ultra-low power, higher density capability and non-volatile characteristics, memristor technology is considered as the best candidate to replace SRAM cells or be employed for routing in digital reconfigurable systems. Although memristor-based reconfigurable circuits can offer many advantages over the conventional CMOS designs, limitations in the utilization of memristor technologies such as electroforming or programming structures have not been thoroughly considered and discussed. This work looks into recent trends in exploiting memristor technologies in reconfigurable circuits and then discusses implementation challenges like memristor programming, reliability and operation of memristor-based memory cells for digitally reconfigurable circuits.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The emergence of memristor technologies has recently received much attention due to their promising features, expecting to be a key driver in the post-CMOS era. With its ultra-low power, higher density capability and non-volatile characteristics, memristor technology is considered as the best candidate to replace SRAM cells or be employed for routing in digital reconfigurable systems. Although memristor-based reconfigurable circuits can offer many advantages over the conventional CMOS designs, limitations in the utilization of memristor technologies such as electroforming or programming structures have not been thoroughly considered and discussed. This work looks into recent trends in exploiting memristor technologies in reconfigurable circuits and then discusses implementation challenges like memristor programming, reliability and operation of memristor-based memory cells for digitally reconfigurable circuits.