Adaptive noisy importance sampling for stochastic optimization

Ö. D. Akyildiz, I. P. Mariño, J. Míguez
{"title":"Adaptive noisy importance sampling for stochastic optimization","authors":"Ö. D. Akyildiz, I. P. Mariño, J. Míguez","doi":"10.1109/CAMSAP.2017.8313215","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an adaptive noisy importance sampler (ANIS) for optimization in an online setting. ANIS is an extension of the family of adaptive importance samplers where the weights are only approximate as they are computed via subsampling of the available data. Allowing errors in the weights enables us to use the algorithm in the so-called large-scale optimization setting, where the cost function consists of the sum of many component functions. ANIS can be used to optimize general cost functions as it does not need any gradient information to update the parameters. We show how the weights of ANIS are related to those of adaptive importance samplers and present some computer simulation results.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we introduce an adaptive noisy importance sampler (ANIS) for optimization in an online setting. ANIS is an extension of the family of adaptive importance samplers where the weights are only approximate as they are computed via subsampling of the available data. Allowing errors in the weights enables us to use the algorithm in the so-called large-scale optimization setting, where the cost function consists of the sum of many component functions. ANIS can be used to optimize general cost functions as it does not need any gradient information to update the parameters. We show how the weights of ANIS are related to those of adaptive importance samplers and present some computer simulation results.
随机优化中的自适应噪声重要性抽样
在这项工作中,我们引入了一种自适应噪声重要性采样器(ANIS),用于在线优化。ANIS是自适应重要性采样器家族的延伸,其中权重仅近似,因为它们是通过可用数据的子采样计算的。允许权重误差使我们能够在所谓的大规模优化设置中使用该算法,其中成本函数由许多分量函数的和组成。ANIS可以用来优化一般的代价函数,因为它不需要任何梯度信息来更新参数。我们展示了ANIS的权重如何与自适应重要性采样器的权重相关联,并给出了一些计算机模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信