Motion planning using fuzzy logic control with minimum sensors

Ho Yim, A. Butler
{"title":"Motion planning using fuzzy logic control with minimum sensors","authors":"Ho Yim, A. Butler","doi":"10.1109/ISIC.1995.525114","DOIUrl":null,"url":null,"abstract":"A new exploratory motion planning technique for a mobile robot is described and demonstrated using a fuzzy logic control (FLC) approach with two distance sensors. The fuzzy logic controller determines steering direction for a four wheel mobile robot based on distance from each sensor to the nearest obstacle ahead of the robot. Changes in steering direction are developed using Mamdani's Minimum Operation Rule and Center of Area (COA) defuzzification. The overall motion planning strategy is described and results from testing are discussed. It is believed that the FLC approach may offer advantages over other exploratory methods.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A new exploratory motion planning technique for a mobile robot is described and demonstrated using a fuzzy logic control (FLC) approach with two distance sensors. The fuzzy logic controller determines steering direction for a four wheel mobile robot based on distance from each sensor to the nearest obstacle ahead of the robot. Changes in steering direction are developed using Mamdani's Minimum Operation Rule and Center of Area (COA) defuzzification. The overall motion planning strategy is described and results from testing are discussed. It is believed that the FLC approach may offer advantages over other exploratory methods.
基于模糊逻辑控制的最小传感器运动规划
描述并演示了一种新的移动机器人探索性运动规划技术,该技术采用模糊逻辑控制(FLC)方法和两个距离传感器。模糊逻辑控制器根据每个传感器到机器人前方最近障碍物的距离来确定四轮移动机器人的转向方向。使用Mamdani最小操作规则和区域中心(COA)去模糊化来开发转向方向的变化。描述了整体运动规划策略,并讨论了测试结果。人们相信FLC方法可能比其他探索性方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信