Sequential Bayesian wavelet denoising

M. Coates, A. Doucet
{"title":"Sequential Bayesian wavelet denoising","authors":"M. Coates, A. Doucet","doi":"10.1109/ISSPA.1999.815743","DOIUrl":null,"url":null,"abstract":"We propose a wavelet model that incorporates coefficient correlation and is expressed in state-space form, allowing the development and application of sequential estimation algorithms for wavelet denoising. We detail a sequential simulation-based estimation algorithm based on particle filters. This algorithm allows Bayesian wavelet denoising to be performed on-line, enabling it to process a vast dataset, and it is intrinsically parallelizable. The experiments indicate that the algorithm performance is comparable to the majority of Bayesian framework batch-based algorithms.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.815743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a wavelet model that incorporates coefficient correlation and is expressed in state-space form, allowing the development and application of sequential estimation algorithms for wavelet denoising. We detail a sequential simulation-based estimation algorithm based on particle filters. This algorithm allows Bayesian wavelet denoising to be performed on-line, enabling it to process a vast dataset, and it is intrinsically parallelizable. The experiments indicate that the algorithm performance is comparable to the majority of Bayesian framework batch-based algorithms.
序列贝叶斯小波去噪
我们提出了一种包含相关系数并以状态空间形式表示的小波模型,允许小波去噪的顺序估计算法的开发和应用。详细介绍了一种基于粒子滤波的序列模拟估计算法。该算法允许在线进行贝叶斯小波去噪,使其能够处理庞大的数据集,并且具有内在的并行性。实验表明,该算法的性能与大多数基于贝叶斯框架的批处理算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信