ECG diagnosis device based on machine learning

Bocheng Wang, Guorong Chen, Lu Rong, Anning Yu, Tingting Wen, Yixuan Zhang, Biaobiao Hu
{"title":"ECG diagnosis device based on machine learning","authors":"Bocheng Wang, Guorong Chen, Lu Rong, Anning Yu, Tingting Wen, Yixuan Zhang, Biaobiao Hu","doi":"10.1109/ICESIT53460.2021.9697057","DOIUrl":null,"url":null,"abstract":"ECG signal can reflect rich physiological information of human body. The health state of human body can be obtained through the analysis of ECG signal. At present, most ECG detectors can only detect ECG signal and calculate heart rate, but can not carry out intelligent diagnosis. A STM32 development board with a front-end acquisition module is used to collect the analog ECG signal generated by an ECG simulator in this works, and the collected signal is uploaded to the Edge Impulse platform for the construction and training of diagnostic model. Then, the trained ECG diagnosis neural network model is deployed in the main controller of the development board for heart rate calculation and ECG signal diagnosis. The device can not only monitor the user's ECG signal, but also display the graphical ECG signal, calculate heart rate value and classify diagnostic results.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9697057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ECG signal can reflect rich physiological information of human body. The health state of human body can be obtained through the analysis of ECG signal. At present, most ECG detectors can only detect ECG signal and calculate heart rate, but can not carry out intelligent diagnosis. A STM32 development board with a front-end acquisition module is used to collect the analog ECG signal generated by an ECG simulator in this works, and the collected signal is uploaded to the Edge Impulse platform for the construction and training of diagnostic model. Then, the trained ECG diagnosis neural network model is deployed in the main controller of the development board for heart rate calculation and ECG signal diagnosis. The device can not only monitor the user's ECG signal, but also display the graphical ECG signal, calculate heart rate value and classify diagnostic results.
基于机器学习的心电诊断装置
心电信号能反映人体丰富的生理信息。通过对心电信号的分析,可以了解人体的健康状况。目前大多数心电检测器只能检测心电信号和计算心率,不能进行智能诊断。本工作使用带有前端采集模块的STM32开发板采集心电模拟器产生的模拟心电信号,并将采集到的信号上传到Edge Impulse平台进行诊断模型的构建和训练。然后,将训练好的心电诊断神经网络模型部署在开发板的主控制器中,进行心率计算和心电信号诊断。该装置不仅可以监测用户的心电信号,还可以图形化显示心电信号,计算心率值,并对诊断结果进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信