Junjie Bai, Jun Peng, Jinliang Shi, Dedong Tang, Ying Wu, Jianqing Li, Kan Luo
{"title":"Dimensional music emotion recognition by valence-arousal regression","authors":"Junjie Bai, Jun Peng, Jinliang Shi, Dedong Tang, Ying Wu, Jianqing Li, Kan Luo","doi":"10.1109/ICCI-CC.2016.7862063","DOIUrl":null,"url":null,"abstract":"As hot topics in current research, music emotion recognition (MER) have been addressed by different disciplines such as physiology, psychology, musicology, cognitive science, etc. In this paper, music emotions was modeled as continuous variables composed of valence and arousal values (VA values) based on Valence-Arousal model, and MER is formulated as a regression problem. 548 dimensions of music features were extracted and selected. The support vector regression, random forest regression and regression neural networks were adopted to recognize music emotion. Experimental results show that these regression algorithms achieved good regression effect. The optimal R2 statistics of values of VA values are 29.3% and 62.5%, which are achieved respectively by RFR and SVR in Relief feature space.","PeriodicalId":135701,"journal":{"name":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2016.7862063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
As hot topics in current research, music emotion recognition (MER) have been addressed by different disciplines such as physiology, psychology, musicology, cognitive science, etc. In this paper, music emotions was modeled as continuous variables composed of valence and arousal values (VA values) based on Valence-Arousal model, and MER is formulated as a regression problem. 548 dimensions of music features were extracted and selected. The support vector regression, random forest regression and regression neural networks were adopted to recognize music emotion. Experimental results show that these regression algorithms achieved good regression effect. The optimal R2 statistics of values of VA values are 29.3% and 62.5%, which are achieved respectively by RFR and SVR in Relief feature space.