View-invariant Human Action Recognition Based on Factorization and HMMs

Xi Li, K. Fukui
{"title":"View-invariant Human Action Recognition Based on Factorization and HMMs","authors":"Xi Li, K. Fukui","doi":"10.1093/ietisy/e91-d.7.1848","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of view invariant action recognition using 2D trajectories of landmark points on human body. It is a challenging task since for a specific action category, the 2D observations of different instances might be extremely different due to varying viewpoint and changes in speed. By assuming that the execution of an action can be approximated by dynamic linear combination of a set of basis shapes, a novel view invariant human action recognition method is proposed based on non-rigid matrix factorization and Hidden Markov Models (HMMs). We show that the low dimensional weight coefficients of basis shapes by measurement matrix non-rigid factorization contain the key information for action recognition regardless of the viewpoint changing. Based on the extracted discriminative features, the HMMs is used for temporal dynamic modeling and robust action classification. The proposed method is tested using real life sequences and promising performance is achieved.","PeriodicalId":295384,"journal":{"name":"IAPR International Workshop on Machine Vision Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAPR International Workshop on Machine Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ietisy/e91-d.7.1848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper addresses the problem of view invariant action recognition using 2D trajectories of landmark points on human body. It is a challenging task since for a specific action category, the 2D observations of different instances might be extremely different due to varying viewpoint and changes in speed. By assuming that the execution of an action can be approximated by dynamic linear combination of a set of basis shapes, a novel view invariant human action recognition method is proposed based on non-rigid matrix factorization and Hidden Markov Models (HMMs). We show that the low dimensional weight coefficients of basis shapes by measurement matrix non-rigid factorization contain the key information for action recognition regardless of the viewpoint changing. Based on the extracted discriminative features, the HMMs is used for temporal dynamic modeling and robust action classification. The proposed method is tested using real life sequences and promising performance is achieved.
基于因子分解和hmm的视觉不变人体动作识别
本文研究了利用人体地标点的二维轨迹进行视觉不变动作识别的问题。这是一项具有挑战性的任务,因为对于特定的动作类别,由于不同的视角和速度变化,不同实例的2D观察结果可能会非常不同。假设一个动作的执行可以由一组基形状的动态线性组合来近似,提出了一种基于非刚性矩阵分解和隐马尔可夫模型(hmm)的视图不变人体动作识别方法。我们通过测量矩阵非刚性分解证明了无论视点变化如何,基形状的低维权系数都包含了动作识别的关键信息。基于提取的判别特征,将hmm用于时间动态建模和鲁棒动作分类。用真实序列对该方法进行了测试,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信