Demo-Net: A Low Complexity Convolutional Neural Network for Demosaicking Images

Mert Bektas, Zhao Gao, E. Edirisinghe, A. Lluis-Gomez
{"title":"Demo-Net: A Low Complexity Convolutional Neural Network for Demosaicking Images","authors":"Mert Bektas, Zhao Gao, E. Edirisinghe, A. Lluis-Gomez","doi":"10.1109/ICCE53296.2022.9730270","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Convolutional Neural Network (CNN) and an associated effective training approach that can be used for demosaicking images generated by different Color Filter Array (CFA) patterns, used in imaging sensors. The proposed CNN, Demo-Net, is a low complexity, auto-encoder based generalized CNN architecture, that can specifically take a CFA pattern as an additional input during training, thus creating a trained model for demosaicking images created by the specific CFA. The proposed Demo-Net allows one to create low complexity demosaicking systems that can be effectively deployed in consumer electronic devices with known sensor specifications.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel Convolutional Neural Network (CNN) and an associated effective training approach that can be used for demosaicking images generated by different Color Filter Array (CFA) patterns, used in imaging sensors. The proposed CNN, Demo-Net, is a low complexity, auto-encoder based generalized CNN architecture, that can specifically take a CFA pattern as an additional input during training, thus creating a trained model for demosaicking images created by the specific CFA. The proposed Demo-Net allows one to create low complexity demosaicking systems that can be effectively deployed in consumer electronic devices with known sensor specifications.
demo.net:一种用于图像去马赛克的低复杂度卷积神经网络
本文提出了一种新颖的卷积神经网络(CNN)和相关的有效训练方法,可用于图像传感器中由不同颜色滤波阵列(CFA)模式生成的图像的去马赛克。本文提出的CNN Demo-Net是一种低复杂度、基于自编码器的广义CNN架构,它可以在训练期间将CFA模式作为额外输入,从而创建一个训练模型,用于对特定CFA创建的图像进行去马赛克处理。提出的Demo-Net允许创建低复杂性的去马赛克系统,可以有效地部署在具有已知传感器规格的消费电子设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信