{"title":"Formation of boiling-stable resistant cassava starch using the atmospheric argon-plasma treatment","authors":"K. Trinh","doi":"10.18067/JBFS.V5I3.224","DOIUrl":null,"url":null,"abstract":"In the current study, structural, morphological properties and in vitro digestibility of argon-plasma treated starches were characterized. Granular cassava starch was treated by an atmospheric DBD Plasma device at 4-9 kV input for 0-40 min. Structural properties of treated sample were characterized using a FTIR measurement. The degree of cross-linking was reached at 8 kV and 10 min of treatment and it was 2-times higher than that of raw starch. Under scanning electron micrographs, treated granules were melted and linked to each other under plasma treatment. Besides, under enzymatic hydrolysis, a rough surface was found in both non-treated and treated granules. However, treated sample showed enzymatic erosion resistance than that of raw starch. Actually, the positive correlation between the degree of cross-link and resistant starch was found. Furthermore, the increase of heat-stable DCL leading to the formation of boiling-stable resistant starch.","PeriodicalId":119762,"journal":{"name":"Journal of Bioenergy and Food Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergy and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18067/JBFS.V5I3.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the current study, structural, morphological properties and in vitro digestibility of argon-plasma treated starches were characterized. Granular cassava starch was treated by an atmospheric DBD Plasma device at 4-9 kV input for 0-40 min. Structural properties of treated sample were characterized using a FTIR measurement. The degree of cross-linking was reached at 8 kV and 10 min of treatment and it was 2-times higher than that of raw starch. Under scanning electron micrographs, treated granules were melted and linked to each other under plasma treatment. Besides, under enzymatic hydrolysis, a rough surface was found in both non-treated and treated granules. However, treated sample showed enzymatic erosion resistance than that of raw starch. Actually, the positive correlation between the degree of cross-link and resistant starch was found. Furthermore, the increase of heat-stable DCL leading to the formation of boiling-stable resistant starch.