Detection and Exploration of Outlier Regions in Sensor Data Streams

Conny Junghans, Michael Gertz
{"title":"Detection and Exploration of Outlier Regions in Sensor Data Streams","authors":"Conny Junghans, Michael Gertz","doi":"10.1109/ICDMW.2008.21","DOIUrl":null,"url":null,"abstract":"Sensor networks play an important role in applications concerned with environmental monitoring, disaster management, and policy making. Effective and flexible techniques are needed to explore unusual environmental phenomena in sensor readings that are continuously streamed to applications. In this paper, we propose a framework that allows to detect outlier sensors and to efficiently construct outlier regions from respective outlier sensors. For this, we utilize the concept of degree-based outliers. Compared to the traditional binary outlier models (outlier versus non-outlier), this concept allows for a more fine-grained, context sensitive analysis of anomalous sensor readings and in particular the construction of heterogeneous outlier regions. The latter suitably reflect the heterogeneity among outlier sensors and sensor readings that determine the spatial extent of outlier regions. Such regions furthermore allow for useful data exploration tasks. We demonstrate the effectiveness and utility of our approach using real world and synthetic sensor data streams.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Sensor networks play an important role in applications concerned with environmental monitoring, disaster management, and policy making. Effective and flexible techniques are needed to explore unusual environmental phenomena in sensor readings that are continuously streamed to applications. In this paper, we propose a framework that allows to detect outlier sensors and to efficiently construct outlier regions from respective outlier sensors. For this, we utilize the concept of degree-based outliers. Compared to the traditional binary outlier models (outlier versus non-outlier), this concept allows for a more fine-grained, context sensitive analysis of anomalous sensor readings and in particular the construction of heterogeneous outlier regions. The latter suitably reflect the heterogeneity among outlier sensors and sensor readings that determine the spatial extent of outlier regions. Such regions furthermore allow for useful data exploration tasks. We demonstrate the effectiveness and utility of our approach using real world and synthetic sensor data streams.
传感器数据流中离群区域的检测与探索
传感器网络在环境监测、灾害管理和政策制定等方面发挥着重要作用。需要有效和灵活的技术来探索传感器读数中持续流到应用程序中的不寻常环境现象。在本文中,我们提出了一个框架,允许检测离群传感器,并有效地从各自的离群传感器构建离群区域。为此,我们利用基于程度的异常值的概念。与传统的二元离群模型(离群值与非离群值)相比,该概念允许对异常传感器读数进行更细粒度、上下文敏感的分析,特别是异质离群值区域的构建。后者适当地反映了离群传感器和传感器读数之间的异质性,这些异质性决定了离群区域的空间范围。这些区域还允许执行有用的数据探索任务。我们使用真实世界和合成传感器数据流证明了我们方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信