Matrix-Query: A Distributed SQL-Like Query Processing Model for Large Database Clusters

Qiao Liu, P. Ji, Y. Zuo
{"title":"Matrix-Query: A Distributed SQL-Like Query Processing Model for Large Database Clusters","authors":"Qiao Liu, P. Ji, Y. Zuo","doi":"10.1109/CyberC.2013.36","DOIUrl":null,"url":null,"abstract":"Along with the development of distributed computation and the rapid growth of data, scientific research increasingly requires the support of high-efficiency relational data processing framework. According to the characteristics of scientific data, for example bulk inserts and unfrequented change, this paper proposes a streaming processing model called Matrix-Query with the matching data storage architecture for relational query. Through transforming the original relational schema to entities and key-value indexing, the data storage solution provides more localization operation and data positioning. Compare to traditional Map-Reduce model, the Matrix-Query isolates the influence between subtasks to ensure execution in a streaming and parallel manner and reduces negative impacts of writing intermediate file. We also optimize the data structure and subtask management to improve the performance of Matrix-Query. The experimental results demonstrate performance advantage of Matrix-query compared to two famous data processing systems, Hive and HadoopDB, which build on the top of Map-Reduce model.","PeriodicalId":133756,"journal":{"name":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2013.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Along with the development of distributed computation and the rapid growth of data, scientific research increasingly requires the support of high-efficiency relational data processing framework. According to the characteristics of scientific data, for example bulk inserts and unfrequented change, this paper proposes a streaming processing model called Matrix-Query with the matching data storage architecture for relational query. Through transforming the original relational schema to entities and key-value indexing, the data storage solution provides more localization operation and data positioning. Compare to traditional Map-Reduce model, the Matrix-Query isolates the influence between subtasks to ensure execution in a streaming and parallel manner and reduces negative impacts of writing intermediate file. We also optimize the data structure and subtask management to improve the performance of Matrix-Query. The experimental results demonstrate performance advantage of Matrix-query compared to two famous data processing systems, Hive and HadoopDB, which build on the top of Map-Reduce model.
矩阵查询:一种面向大型数据库集群的分布式类sql查询处理模型
随着分布式计算的发展和数据量的快速增长,科学研究越来越需要高效的关系型数据处理框架的支持。针对科学数据大量插入和不频繁更改的特点,提出了一种与关系型查询相匹配的数据存储体系结构的流处理模型Matrix-Query。数据存储解决方案通过将原有的关系模式转换为实体和键值索引,提供了更多的本地化操作和数据定位。与传统的Map-Reduce模型相比,Matrix-Query隔离了子任务之间的影响,确保以流和并行的方式执行,减少了写入中间文件的负面影响。为了提高矩阵查询的性能,我们还对数据结构和子任务管理进行了优化。实验结果表明,与建立在Map-Reduce模型之上的Hive和HadoopDB两种著名的数据处理系统相比,Matrix-query具有性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信