Human action recognition in 3D motion sequences

Konstantinos Kelgeorgiadis, N. Nikolaidis
{"title":"Human action recognition in 3D motion sequences","authors":"Konstantinos Kelgeorgiadis, N. Nikolaidis","doi":"10.5281/ZENODO.43769","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method for learning and recognizing human actions on dynamic binary volumetric (voxel-based) or 3D mesh movement data. The orientation of the human body in each 3D posture is estimated by detecting its feet and this information is used to orient all postures in a consistent manner. K-means is applied on the 3D postures space of the training data to discover characteristic movement patterns namely 3D dynemes. Subsequently, fuzzy vector quantization (FVQ) is utilized to represent each 3D posture in the 3D dynemes space and then information from all time instances is combined to represent the entire action sequence. Linear discriminant analysis (LDA) is then applied. The actual classification step utilizes support vector machines (SVM). Results on a 3D action database verified that the method can achieve good performance.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a method for learning and recognizing human actions on dynamic binary volumetric (voxel-based) or 3D mesh movement data. The orientation of the human body in each 3D posture is estimated by detecting its feet and this information is used to orient all postures in a consistent manner. K-means is applied on the 3D postures space of the training data to discover characteristic movement patterns namely 3D dynemes. Subsequently, fuzzy vector quantization (FVQ) is utilized to represent each 3D posture in the 3D dynemes space and then information from all time instances is combined to represent the entire action sequence. Linear discriminant analysis (LDA) is then applied. The actual classification step utilizes support vector machines (SVM). Results on a 3D action database verified that the method can achieve good performance.
三维运动序列中的人体动作识别
在本文中,我们提出了一种基于动态二进制体积(基于体素)或三维网格运动数据学习和识别人类动作的方法。人体在每个3D姿势中的方向是通过检测其脚来估计的,这些信息用于以一致的方式确定所有姿势的方向。对训练数据的三维姿态空间应用K-means,发现特征运动模式即三维动态。然后,利用模糊矢量量化(FVQ)在三维动力学空间中表示每个三维姿态,然后结合所有时间实例的信息来表示整个动作序列。然后应用线性判别分析(LDA)。实际的分类步骤使用支持向量机(SVM)。在一个三维动作数据库上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信