Word and Symbol Spotting Using Spatial Organization of Local Descriptors

Marçal Rusiñol, J. Lladós
{"title":"Word and Symbol Spotting Using Spatial Organization of Local Descriptors","authors":"Marçal Rusiñol, J. Lladós","doi":"10.1109/DAS.2008.24","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to spot both text and graphical symbols in a collection of images of wiring diagrams. Word spotting and symbol spotting methods tend to use the most discriminative features to describe the objects to be located. This fact makes that one can not tackle with textual and symbolic information at the same time. We propose a spotting architecture able to index both words and symbols, inspired in off-the-shelf object recognition architectures. Keypoints are extracted from a document image and a local descriptor is computed at each of these points of interest. The spatial organization of these descriptors validate the hypothesis to find an object (text or symbol) in a certain location and under a certain pose.","PeriodicalId":423207,"journal":{"name":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2008.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper we present a method to spot both text and graphical symbols in a collection of images of wiring diagrams. Word spotting and symbol spotting methods tend to use the most discriminative features to describe the objects to be located. This fact makes that one can not tackle with textual and symbolic information at the same time. We propose a spotting architecture able to index both words and symbols, inspired in off-the-shelf object recognition architectures. Keypoints are extracted from a document image and a local descriptor is computed at each of these points of interest. The spatial organization of these descriptors validate the hypothesis to find an object (text or symbol) in a certain location and under a certain pose.
利用局部描述符的空间组织识别词和符号
在本文中,我们提出了一种在接线图图像集合中识别文本和图形符号的方法。单词识别和符号识别方法倾向于使用最具区别性的特征来描述待定位的对象。这一事实使得人们不能同时处理文本信息和符号信息。我们提出了一种能够索引单词和符号的定位架构,灵感来自现成的对象识别架构。从文档图像中提取关键点,并在每个感兴趣的点处计算一个局部描述符。这些描述符的空间组织验证了在特定位置和特定姿势下找到对象(文本或符号)的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信