{"title":"Word and Symbol Spotting Using Spatial Organization of Local Descriptors","authors":"Marçal Rusiñol, J. Lladós","doi":"10.1109/DAS.2008.24","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to spot both text and graphical symbols in a collection of images of wiring diagrams. Word spotting and symbol spotting methods tend to use the most discriminative features to describe the objects to be located. This fact makes that one can not tackle with textual and symbolic information at the same time. We propose a spotting architecture able to index both words and symbols, inspired in off-the-shelf object recognition architectures. Keypoints are extracted from a document image and a local descriptor is computed at each of these points of interest. The spatial organization of these descriptors validate the hypothesis to find an object (text or symbol) in a certain location and under a certain pose.","PeriodicalId":423207,"journal":{"name":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2008.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
In this paper we present a method to spot both text and graphical symbols in a collection of images of wiring diagrams. Word spotting and symbol spotting methods tend to use the most discriminative features to describe the objects to be located. This fact makes that one can not tackle with textual and symbolic information at the same time. We propose a spotting architecture able to index both words and symbols, inspired in off-the-shelf object recognition architectures. Keypoints are extracted from a document image and a local descriptor is computed at each of these points of interest. The spatial organization of these descriptors validate the hypothesis to find an object (text or symbol) in a certain location and under a certain pose.