A time efficient architecture implementation of PCA for ICA

Parivesh, Ranjan Sharma
{"title":"A time efficient architecture implementation of PCA for ICA","authors":"Parivesh, Ranjan Sharma","doi":"10.1109/ICECA.2017.8203637","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) Algorithm is a popular algorithm for BSS (Blind Source Separation) and Principal component analysis (PCA) works as its preprocessing algorithm. This work proposes time efficient and high precision PCA architecture which operates on 2 channels each with 3000 samples in single precision FP (floating point) format. Architecture uses high speed parallel computations for throughput producing more than 3.5 Gflops and FP units are incorporated for high precision.","PeriodicalId":222768,"journal":{"name":"2017 International conference of Electronics, Communication and Aerospace Technology (ICECA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International conference of Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA.2017.8203637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Independent component analysis (ICA) Algorithm is a popular algorithm for BSS (Blind Source Separation) and Principal component analysis (PCA) works as its preprocessing algorithm. This work proposes time efficient and high precision PCA architecture which operates on 2 channels each with 3000 samples in single precision FP (floating point) format. Architecture uses high speed parallel computations for throughput producing more than 3.5 Gflops and FP units are incorporated for high precision.
用于ICA的PCA的高效架构实现
独立分量分析(ICA)算法是一种常用的盲源分离算法,主成分分析(PCA)是其预处理算法。本文提出了一种具有时间效率和高精度的PCA架构,该架构以单精度FP(浮点)格式在2个通道上运行,每个通道有3000个样本。架构采用高速并行计算,吞吐量超过3.5 Gflops,并集成FP单元以实现高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信