Toward lightweight acoustic fault detection and identification of UAV rotors

Marek Kołodziejczak, Radosław Puchalski, Adam Bondyra, S. Sladic, Wojciech Giernacki
{"title":"Toward lightweight acoustic fault detection and identification of UAV rotors","authors":"Marek Kołodziejczak, Radosław Puchalski, Adam Bondyra, S. Sladic, Wojciech Giernacki","doi":"10.1109/ICUAS57906.2023.10156624","DOIUrl":null,"url":null,"abstract":"Data-driven Fault Detection and Isolation (FDI) systems receive a lot of attention from researchers. Several recent applications utilize acoustic signals recorded on-board of the Unmanned Aerial Vehicle (UAV) to assess the condition of propulsion system and diagnose rotor blade impairments. In this work, we propose two major improvements to the previously developed FDI scheme. They are aimed at reducing the computational load of the deep LSTM-based (Long ShortTerm Memory) fault classifier. First, the PCA-based (Principal Component Analysis) feature space reduction allows reducing the size of neural networks and thus decreasing the number of mathematical operations. Secondly, a modified algorithm introduces an ensemble of multiple weak classifiers with a decision-fusion strategy that provides the final status of the system. The developed schemes were evaluated in comparison to the original algorithm, using an extensive dataset of real-flight acoustic data. The results show that the proposed improvements significantly reduce the computation time within the assumed performance constraints.","PeriodicalId":379073,"journal":{"name":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS57906.2023.10156624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven Fault Detection and Isolation (FDI) systems receive a lot of attention from researchers. Several recent applications utilize acoustic signals recorded on-board of the Unmanned Aerial Vehicle (UAV) to assess the condition of propulsion system and diagnose rotor blade impairments. In this work, we propose two major improvements to the previously developed FDI scheme. They are aimed at reducing the computational load of the deep LSTM-based (Long ShortTerm Memory) fault classifier. First, the PCA-based (Principal Component Analysis) feature space reduction allows reducing the size of neural networks and thus decreasing the number of mathematical operations. Secondly, a modified algorithm introduces an ensemble of multiple weak classifiers with a decision-fusion strategy that provides the final status of the system. The developed schemes were evaluated in comparison to the original algorithm, using an extensive dataset of real-flight acoustic data. The results show that the proposed improvements significantly reduce the computation time within the assumed performance constraints.
无人机旋翼轻量化声学故障检测与识别研究
数据驱动的故障检测与隔离(FDI)系统受到了研究人员的广泛关注。最近的一些应用是利用无人机上记录的声信号来评估推进系统的状态和诊断旋翼叶片的损伤。在这项工作中,我们对以前制定的外国直接投资计划提出了两个主要改进。它们旨在减少基于深度lstm(长短期记忆)故障分类器的计算量。首先,基于pca(主成分分析)的特征空间缩减允许减少神经网络的大小,从而减少数学运算的数量。其次,改进算法引入了多个弱分类器的集合,并采用决策融合策略提供系统的最终状态。利用广泛的真实飞行声学数据集,将开发的方案与原始算法进行了比较评估。结果表明,在假定的性能约束下,所提出的改进显著减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信