A novel rough set approach for classification

Lijuan Zhang, Zhou-Jun Li
{"title":"A novel rough set approach for classification","authors":"Lijuan Zhang, Zhou-Jun Li","doi":"10.1109/GRC.2006.1635812","DOIUrl":null,"url":null,"abstract":"Rough set theory has been widely and successfully used in data mining, especially in classification field. But most existing rough set based classification approaches require computing optimal attribute reduction, which is usually intractable and many problems related to it have been shown to be NP-hard. Although approximate algorithms exist, they also tend to be computationally expensive. This paper presents a novel rough set method for classification, which does not require computing attribute reduction. It stepwise investigates condition attributes and outputs the classification rules induced by them, which is just like the strategy of \"on the fly\". The theoretical analysis and the empirical study show that the proposed method is effective and efficient. Index Terms—rough set, attribute reduction, data mining, classification","PeriodicalId":126161,"journal":{"name":"IEEE International Conference on Granular Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Rough set theory has been widely and successfully used in data mining, especially in classification field. But most existing rough set based classification approaches require computing optimal attribute reduction, which is usually intractable and many problems related to it have been shown to be NP-hard. Although approximate algorithms exist, they also tend to be computationally expensive. This paper presents a novel rough set method for classification, which does not require computing attribute reduction. It stepwise investigates condition attributes and outputs the classification rules induced by them, which is just like the strategy of "on the fly". The theoretical analysis and the empirical study show that the proposed method is effective and efficient. Index Terms—rough set, attribute reduction, data mining, classification
一种新的粗糙集分类方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信