Qiqi Zhu, J. Wan, Yanfei Zhong, Qingfeng Guan, Liangpei Zhang, Deren Li
{"title":"Topic Model for Remote Sensing Data: A Comprehensive Review","authors":"Qiqi Zhu, J. Wan, Yanfei Zhong, Qingfeng Guan, Liangpei Zhang, Deren Li","doi":"10.1109/IGARSS39084.2020.9323178","DOIUrl":null,"url":null,"abstract":"From text analysis to image interpretation, the topic model (TM) always plays an important role. With its powerful semantic mining capabilities, it is able to capture the latent spectral and spatial information from remote sensing (RS) images. Recent years have witnessed widespread use of TM to solve the problems in RS image interpretation, i.e., semantic segmentation, target detection, and scene classification. However, there has not yet been a study expatiating and summarizing the current situation of RS applications with TM. This paper intends to systematically summarize the application of TM in RS images and to conduct several typical experiments for comparison. Specifically, the architecture of our work can be explained as follows: 1) the theory of TM; 2) the applications of RS based on TM; 3) experimental analysis of typical TM methods to provide reference for further understanding, and 4) summary and prospects for guiding further research into TM for RS data.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
From text analysis to image interpretation, the topic model (TM) always plays an important role. With its powerful semantic mining capabilities, it is able to capture the latent spectral and spatial information from remote sensing (RS) images. Recent years have witnessed widespread use of TM to solve the problems in RS image interpretation, i.e., semantic segmentation, target detection, and scene classification. However, there has not yet been a study expatiating and summarizing the current situation of RS applications with TM. This paper intends to systematically summarize the application of TM in RS images and to conduct several typical experiments for comparison. Specifically, the architecture of our work can be explained as follows: 1) the theory of TM; 2) the applications of RS based on TM; 3) experimental analysis of typical TM methods to provide reference for further understanding, and 4) summary and prospects for guiding further research into TM for RS data.