An Open-Source Azure Solution for Scalable Genomics Workflows

F. Yang-Turner, Lawrence Gripper, J. Swann, Trien Do, D. Foster, Denis Volk, Anita Ramanan, Marcus Robinson, T. Peto, D. Crook
{"title":"An Open-Source Azure Solution for Scalable Genomics Workflows","authors":"F. Yang-Turner, Lawrence Gripper, J. Swann, Trien Do, D. Foster, Denis Volk, Anita Ramanan, Marcus Robinson, T. Peto, D. Crook","doi":"10.1109/SERVICES.2018.00033","DOIUrl":null,"url":null,"abstract":"We present an open-source Azure solution for running scalable genomics workflows. It benefits from state-of-art distributed workflow framework, container and cloud technologies and allows users to create a cluster that is scaled to suit their workload in minutes. We describe the design decisions, solution testing and automation options to support a variety of users for their genomic data analytics. The solution demonstrates a generic and customizable approach to run genomic data analytics workflows on a cloud environment.","PeriodicalId":130225,"journal":{"name":"2018 IEEE World Congress on Services (SERVICES)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE World Congress on Services (SERVICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an open-source Azure solution for running scalable genomics workflows. It benefits from state-of-art distributed workflow framework, container and cloud technologies and allows users to create a cluster that is scaled to suit their workload in minutes. We describe the design decisions, solution testing and automation options to support a variety of users for their genomic data analytics. The solution demonstrates a generic and customizable approach to run genomic data analytics workflows on a cloud environment.
可扩展基因组工作流程的开源Azure解决方案
我们提出了一个开源的Azure解决方案,用于运行可扩展的基因组工作流程。它受益于最先进的分布式工作流框架、容器和云技术,并允许用户在几分钟内创建一个可扩展的集群,以适应他们的工作负载。我们描述了设计决策,解决方案测试和自动化选项,以支持各种用户的基因组数据分析。该解决方案演示了一种在云环境中运行基因组数据分析工作流的通用和可定制的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信