Multiprogram stabilization of equilibrium positions for a nonlinear dynamic system

Yakov Shakhov
{"title":"Multiprogram stabilization of equilibrium positions for a nonlinear dynamic system","authors":"Yakov Shakhov","doi":"10.1145/2160749.2160774","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of multiprogram stable controls synthesis for dynamic systems. We solve the problem for nonlinear systems based on Zubov's approach (a multiprogram control as Hermite's interpolative polynomial) that provides constraining of multiprogram controls. The theorem of a sufficient condition for control synthesis in a nonlinear system is formulated. Control synthesis for a model of the mathematical pendulum is presented as an example. Equilibrium positions of the system are considered in a capacity of a program motion set.","PeriodicalId":407345,"journal":{"name":"Joint International Conference on Human-Centered Computer Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint International Conference on Human-Centered Computer Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2160749.2160774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider the problem of multiprogram stable controls synthesis for dynamic systems. We solve the problem for nonlinear systems based on Zubov's approach (a multiprogram control as Hermite's interpolative polynomial) that provides constraining of multiprogram controls. The theorem of a sufficient condition for control synthesis in a nonlinear system is formulated. Control synthesis for a model of the mathematical pendulum is presented as an example. Equilibrium positions of the system are considered in a capacity of a program motion set.
非线性动态系统平衡位置的多程序镇定
研究动态系统的多程序稳定控制综合问题。我们基于Zubov方法(作为Hermite插值多项式的多程序控制)解决了非线性系统的问题,该方法提供了多程序控制的约束。给出了非线性系统控制综合的一个充分条件定理。以数学摆模型的控制综合为例。系统的平衡位置被认为是一个程序运动集的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信