Actions Speak Louder Than (Pass)words: Passive Authentication of Smartphone* Users via Deep Temporal Features

Debayan Deb, A. Ross, Anil K. Jain, K. Prakah-Asante, K. Prasad
{"title":"Actions Speak Louder Than (Pass)words: Passive Authentication of Smartphone* Users via Deep Temporal Features","authors":"Debayan Deb, A. Ross, Anil K. Jain, K. Prakah-Asante, K. Prasad","doi":"10.1109/ICB45273.2019.8987433","DOIUrl":null,"url":null,"abstract":"Prevailing user authentication schemes on smartphones rely on explicit user interaction, where a user types in a passcode or presents a biometric cue such as face, fingerprint, or iris. In addition to being cumbersome and obtrusive to the users, such authentication mechanisms pose security and privacy concerns. Passive authentication systems can tackle these challenges by unobtrusively monitoring the user’s interaction with the device. We propose a Siamese Long Short-Term Memory (LSTM) network architecture for passive authentication, where users can be verified without requiring any explicit authentication step. On a dataset comprising of measurements from 30 smartphone sensor modalities for 37 users, we evaluate our approach on 8 dominant modalities, namely, keystroke dynamics, GPS location, accelerometer, gyroscope, magnetometer, linear accelerometer, gravity, and rotation sensors. Experimental results find that a genuine user can be correctly verified 96.47% a false accept rate of 0.1% within 3 seconds.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Prevailing user authentication schemes on smartphones rely on explicit user interaction, where a user types in a passcode or presents a biometric cue such as face, fingerprint, or iris. In addition to being cumbersome and obtrusive to the users, such authentication mechanisms pose security and privacy concerns. Passive authentication systems can tackle these challenges by unobtrusively monitoring the user’s interaction with the device. We propose a Siamese Long Short-Term Memory (LSTM) network architecture for passive authentication, where users can be verified without requiring any explicit authentication step. On a dataset comprising of measurements from 30 smartphone sensor modalities for 37 users, we evaluate our approach on 8 dominant modalities, namely, keystroke dynamics, GPS location, accelerometer, gyroscope, magnetometer, linear accelerometer, gravity, and rotation sensors. Experimental results find that a genuine user can be correctly verified 96.47% a false accept rate of 0.1% within 3 seconds.
行动比(通过)话语更响亮:智能手机用户通过深度时间特征的被动认证
智能手机上流行的用户认证方案依赖于明确的用户交互,其中用户输入密码或提供生物识别提示,如面部、指纹或虹膜。这种身份验证机制除了对用户来说很麻烦和突兀之外,还会带来安全和隐私问题。被动身份验证系统可以通过不引人注目地监视用户与设备的交互来解决这些挑战。我们提出了一种用于被动身份验证的暹罗长短期记忆(LSTM)网络架构,其中用户可以在不需要任何显式身份验证步骤的情况下进行验证。在包含来自37个用户的30个智能手机传感器模式的测量数据集上,我们评估了我们在8个主要模式上的方法,即击键动力学、GPS定位、加速度计、陀螺仪、磁力计、线性加速度计、重力和旋转传感器。实验结果表明,3秒内正确率为96.47%,误接受率为0.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信