Debayan Deb, A. Ross, Anil K. Jain, K. Prakah-Asante, K. Prasad
{"title":"Actions Speak Louder Than (Pass)words: Passive Authentication of Smartphone* Users via Deep Temporal Features","authors":"Debayan Deb, A. Ross, Anil K. Jain, K. Prakah-Asante, K. Prasad","doi":"10.1109/ICB45273.2019.8987433","DOIUrl":null,"url":null,"abstract":"Prevailing user authentication schemes on smartphones rely on explicit user interaction, where a user types in a passcode or presents a biometric cue such as face, fingerprint, or iris. In addition to being cumbersome and obtrusive to the users, such authentication mechanisms pose security and privacy concerns. Passive authentication systems can tackle these challenges by unobtrusively monitoring the user’s interaction with the device. We propose a Siamese Long Short-Term Memory (LSTM) network architecture for passive authentication, where users can be verified without requiring any explicit authentication step. On a dataset comprising of measurements from 30 smartphone sensor modalities for 37 users, we evaluate our approach on 8 dominant modalities, namely, keystroke dynamics, GPS location, accelerometer, gyroscope, magnetometer, linear accelerometer, gravity, and rotation sensors. Experimental results find that a genuine user can be correctly verified 96.47% a false accept rate of 0.1% within 3 seconds.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Prevailing user authentication schemes on smartphones rely on explicit user interaction, where a user types in a passcode or presents a biometric cue such as face, fingerprint, or iris. In addition to being cumbersome and obtrusive to the users, such authentication mechanisms pose security and privacy concerns. Passive authentication systems can tackle these challenges by unobtrusively monitoring the user’s interaction with the device. We propose a Siamese Long Short-Term Memory (LSTM) network architecture for passive authentication, where users can be verified without requiring any explicit authentication step. On a dataset comprising of measurements from 30 smartphone sensor modalities for 37 users, we evaluate our approach on 8 dominant modalities, namely, keystroke dynamics, GPS location, accelerometer, gyroscope, magnetometer, linear accelerometer, gravity, and rotation sensors. Experimental results find that a genuine user can be correctly verified 96.47% a false accept rate of 0.1% within 3 seconds.