Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron

J. Kusuma, Rika Rosnelly, B. Hayadi, Magister Ilmu, Komputer
{"title":"Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron","authors":"J. Kusuma, Rika Rosnelly, B. Hayadi, Magister Ilmu, Komputer","doi":"10.52158/jacost.v4i1.484","DOIUrl":null,"url":null,"abstract":"Corn is one of the substitute staple foods in Indonesia after rice. Maize crops grown in Indonesia often experience considerable losses due to maize plant diseases. Generally, plant diseases are initially caused by morphological changes in the leaves. Accurate detection and classification of diseases that appear on the leaves will prevent the widespread spread of the disease. This study will compare classification algorithms, namely Support Vector Machine, K-Nearest Neighbors, and Multilayer Perceptron to find the best algorithm in the classification of leaf disease in corn plants, namely, cercospora leaf spot gray, common rust, and northern leaf blight using the VGG-16 deep learning model used as image feature extraction. The results showed that the Multilayer Perceptron algorithm produced the best values with accuracy, precision, and recall of 97.4% each.","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/jacost.v4i1.484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Corn is one of the substitute staple foods in Indonesia after rice. Maize crops grown in Indonesia often experience considerable losses due to maize plant diseases. Generally, plant diseases are initially caused by morphological changes in the leaves. Accurate detection and classification of diseases that appear on the leaves will prevent the widespread spread of the disease. This study will compare classification algorithms, namely Support Vector Machine, K-Nearest Neighbors, and Multilayer Perceptron to find the best algorithm in the classification of leaf disease in corn plants, namely, cercospora leaf spot gray, common rust, and northern leaf blight using the VGG-16 deep learning model used as image feature extraction. The results showed that the Multilayer Perceptron algorithm produced the best values with accuracy, precision, and recall of 97.4% each.
玉米是印尼继大米之后的替代主食之一。由于玉米植物病害,印度尼西亚种植的玉米作物经常遭受相当大的损失。一般来说,植物病害最初是由叶片的形态变化引起的。对出现在叶片上的病害进行准确的检测和分类,可以防止病害的广泛传播。本研究将比较支持向量机(Support Vector Machine)、k近邻(K-Nearest Neighbors)和多层感知器(Multilayer Perceptron)三种分类算法,以VGG-16深度学习模型作为图像特征提取,寻找玉米叶片病害(cercospora叶斑灰、普通锈病和北方叶枯病)分类的最佳算法。结果表明,多层感知器算法的准确率、精密度和召回率均为97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信