Enkelejda Kasneci, G. Kasneci, W. Rosenstiel, M. Bogdan
{"title":"Bayesian online clustering of eye movement data","authors":"Enkelejda Kasneci, G. Kasneci, W. Rosenstiel, M. Bogdan","doi":"10.1145/2168556.2168617","DOIUrl":null,"url":null,"abstract":"The task of automatically tracking the visual attention in dynamic visual scenes is highly challenging. To approach it, we propose a Bayesian online learning algorithm. As the visual scene changes and new objects appear, based on a mixture model, the algorithm can identify and tell visual saccades (transitions) from visual fixation clusters (regions of interest). The approach is evaluated on real-world data, collected from eye-tracking experiments in driving sessions.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2168556.2168617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
The task of automatically tracking the visual attention in dynamic visual scenes is highly challenging. To approach it, we propose a Bayesian online learning algorithm. As the visual scene changes and new objects appear, based on a mixture model, the algorithm can identify and tell visual saccades (transitions) from visual fixation clusters (regions of interest). The approach is evaluated on real-world data, collected from eye-tracking experiments in driving sessions.