V. Letort, P. Cournède, J. Lecoeur, Irène Hummel, P. Reffye, Angélique Christophe
{"title":"Effect of Topological and Phenological Changes on Biomass Partitioning in Arabidopsis thaliana Inflorescence: A Preliminary Model-Based Study","authors":"V. Letort, P. Cournède, J. Lecoeur, Irène Hummel, P. Reffye, Angélique Christophe","doi":"10.1109/PMA.2006.56","DOIUrl":null,"url":null,"abstract":"Although the existence of phenological impact on biomass partitioning in the plant is known for many species, it is difficult to quantify this effect and to unravel it from the complex functional processes that interact during plant growth. This work explores the variations of biomass allocated to fruits according to simple changes in the topological and phenological development of Arabidopsis thaliana plants. Four plants of the same genotype (ecotype Columbia) were grown in controlled conditions in growth chamber. Their topological differences were studied using the functional-structural model GreenLab. It showed that when fitting the four plants with a single set of parameters, but each plant being given its own topological structure, half of the biomass variability can be reproduced.","PeriodicalId":315124,"journal":{"name":"2006 Second International Symposium on Plant Growth Modeling and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1899-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Second International Symposium on Plant Growth Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2006.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Although the existence of phenological impact on biomass partitioning in the plant is known for many species, it is difficult to quantify this effect and to unravel it from the complex functional processes that interact during plant growth. This work explores the variations of biomass allocated to fruits according to simple changes in the topological and phenological development of Arabidopsis thaliana plants. Four plants of the same genotype (ecotype Columbia) were grown in controlled conditions in growth chamber. Their topological differences were studied using the functional-structural model GreenLab. It showed that when fitting the four plants with a single set of parameters, but each plant being given its own topological structure, half of the biomass variability can be reproduced.