Muhammad Shahbaz Muneer, Syed Muhammad Nabeel Mustafa, Syeda Sundus Zehra, Haniya Maqsood
{"title":"Rain Predictive Model using Machine learning Techniques","authors":"Muhammad Shahbaz Muneer, Syed Muhammad Nabeel Mustafa, Syeda Sundus Zehra, Haniya Maqsood","doi":"10.1109/IMCERT57083.2023.10075275","DOIUrl":null,"url":null,"abstract":"Climate is rapidly changing around the world. Over time, there have been significant changes in the weather. Rainfall is now erratic due to climate change. The frequency of extreme weather events like droughts and floods has increased due to climate change, necessitating the need for more precise and timely rainfall forecasts. For strategic reasons including agriculture, water resource management, and architectural design, rain forecasting is crucial. The naturally occurring non-stationary component in the rainfall time series impairs model performance for practical hydrologists and drought risk assessors. We present a rain predicting model based on machine learning to address the forecasting issue. In our work, we predict the possibility of rain the next day on the basis of last 10 years' data. The variables that were calculated during the experiments were humidity, pressure, evaporation, sunshine, rainfall, and so on. Random Forest gave the 90% accuracy with 0.904 Area under Curve, highest out of all the algorithms. The model's performance will significantly aid in the rain forecast.","PeriodicalId":201596,"journal":{"name":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCERT57083.2023.10075275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Climate is rapidly changing around the world. Over time, there have been significant changes in the weather. Rainfall is now erratic due to climate change. The frequency of extreme weather events like droughts and floods has increased due to climate change, necessitating the need for more precise and timely rainfall forecasts. For strategic reasons including agriculture, water resource management, and architectural design, rain forecasting is crucial. The naturally occurring non-stationary component in the rainfall time series impairs model performance for practical hydrologists and drought risk assessors. We present a rain predicting model based on machine learning to address the forecasting issue. In our work, we predict the possibility of rain the next day on the basis of last 10 years' data. The variables that were calculated during the experiments were humidity, pressure, evaporation, sunshine, rainfall, and so on. Random Forest gave the 90% accuracy with 0.904 Area under Curve, highest out of all the algorithms. The model's performance will significantly aid in the rain forecast.