Actor Spatiotemporal Relation Networks for Group Activity Recognition

Yan Zhou, Siqi Tan, Dongli Wang, Jinzhen Mu
{"title":"Actor Spatiotemporal Relation Networks for Group Activity Recognition","authors":"Yan Zhou, Siqi Tan, Dongli Wang, Jinzhen Mu","doi":"10.1109/ICIST52614.2021.9440644","DOIUrl":null,"url":null,"abstract":"The existing video-based group activity recognition methods do not full use spatiotemporal information, and cannot effectively improve the accuracy of group recognition. This paper proposes an effective group activity recognition model based on Actor Spatial-Temporal Relation Networks (ASRN) to capture potential spatiotemporal features in an end-to-end manner. First, we propose an SRM to get the feature correlation between feature nodes from the temporal dimension and the spatial dimension. Second, Personal Spatiotemporal Feature Module (PSFM) and a Multi-actors Relation Module (MRM) are designed using SRM to extract actor-level spatiotemporal semantic information and the relation features between actors. We conducted experiments on two datasets: volleyball dataset and collective activity dataset. The results on these two datasets show the superiority of our method.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The existing video-based group activity recognition methods do not full use spatiotemporal information, and cannot effectively improve the accuracy of group recognition. This paper proposes an effective group activity recognition model based on Actor Spatial-Temporal Relation Networks (ASRN) to capture potential spatiotemporal features in an end-to-end manner. First, we propose an SRM to get the feature correlation between feature nodes from the temporal dimension and the spatial dimension. Second, Personal Spatiotemporal Feature Module (PSFM) and a Multi-actors Relation Module (MRM) are designed using SRM to extract actor-level spatiotemporal semantic information and the relation features between actors. We conducted experiments on two datasets: volleyball dataset and collective activity dataset. The results on these two datasets show the superiority of our method.
群体活动识别的行动者时空关系网络
现有的基于视频的群体活动识别方法没有充分利用时空信息,不能有效提高群体识别的准确率。提出了一种基于行动者时空关系网络(行动者时空关系网络)的有效群体活动识别模型,以端到端方式捕捉潜在的时空特征。首先,我们提出了一种SRM方法,从时间维度和空间维度获取特征节点之间的特征相关性。其次,设计了个人时空特征模块(PSFM)和多行为者关系模块(MRM),利用SRM提取行为者层面的时空语义信息和行为者之间的关系特征;我们在两个数据集上进行实验:排球数据集和集体活动数据集。在这两个数据集上的结果表明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信